

B4R Booklet

B4R Example Projects

Copyright: © 2024 Anywhere Software Edition 2.5

Last update: 2024.01.05

Table of contents 2 B4R Example Projects

1 Getting started .. 6

1.1 Useful links .. 6
2 Arduino UNO board ... 7

2.1 Power supply .. 8
2.2 Pins ... 8

2.2.1 Power pins .. 8
2.2.2 Digital Input / Output pins ... 9
2.2.3 Analog input pins ... 9

2.3 Input modes INPUT / INPUT_PULLUP .. 9
2.4 Basic Pin functions ... 10

2.4.1 Initialize.. 10
2.4.2 DigitalRead .. 11
2.4.3 DigitalWrite.. 11
2.4.4 AnalogRead .. 11

2.4.5 AnalogWrite ... 12
2.5 RunNative inline C .. 13

3 B4R differences versus B4A/B4J/B4i .. 14

3.1 No user interface .. 14
3.2 Memory .. 14
3.3 Stack Buffer ... 15
3.4 ByteConverter .. 15

3.5 Concatenation ... 16
3.6 String methods ... 17
3.7 Encoding .. 18

3.8 Variables .. 18
3.9 New Keywords ... 19

3.9.1 AddLooper ... 19
3.9.2 AvailableRAM ... 19

3.9.3 CallSubPlus .. 19
3.9.4 Delay .. 20

3.9.5 DelayMicroseconds .. 20
3.9.6 JoinBytes .. 20
3.9.7 JoinStrings .. 20

3.9.8 MapRange .. 21
3.9.9 Micros .. 21

3.9.10 Millis .. 21
3.9.11 StackBufferUsage .. 21

3.10 Variable Types ... 22

3.10.1 Array variables ... 23

3.10.2 Array of objects .. 24
3.10.3 Type variables .. 25

3.11 Casting ... 26

4 First example programs .. 27
4.1 Button.b4r .. 28

4.1.1 Sketch ... 28
4.1.2 Code ... 29

4.2 LedGreen.b4r ... 30

4.2.1 Sketch ... 30
4.2.2 Code ... 31

4.3 LedGreenNoSwitchBounce.b4r ... 32
4.3.1 Sketch ... 33

4.3.2 Code ... 34
5 More advanced programs Arduino Uno ... 35

Table of contents 3 B4R Example Projects

5.1 TrafficLight.b4r .. 35

5.1.1 Sketch ... 35
5.1.2 Code ... 36

5.2 LightDimmer.b4r ... 38
5.2.1 Sketch ... 38

5.2.2 Code ... 39
5.3 DCMotor.b4r .. 41

5.3.1 Sketch ... 41
5.3.2 Code ... 42

5.4 DCMotorHBridge.b4r .. 44

5.4.1 Sketch ... 45
5.4.2 Code ... 46

5.5 ServoMotor.b4r .. 48
5.5.1 Sketch ... 48

5.5.2 Code ... 49
5.6 PulseWidthModulation.b4r .. 51

5.6.1 Sketch ... 52

5.6.2 Code ... 53
5.7 PulsePeriodModulation.b4r .. 55

5.7.1 Sketch ... 56
5.7.2 Code ... 57

5.8 DCMotor slow motion ... 59
5.8.1 Sketch ... 59
5.8.2 Code ... 60

5.9 LCDDisplay.b4r ... 63
5.9.1 LCD display ... 65

5.9.2 Sketch ... 66
5.9.3 Code ... 67

5.10 PulseWidthMeter.. 69
5.10.1 Sketch ... 69

5.10.2 Code ... 70
5.11 ObjectArrays.b4r .. 71

5.11.1 Sketch ... 71

5.11.2 Code ... 72
6 HC-05 Bluetooth ... 77

6.1 Program HC05LedOnOff.b4r .. 78
6.1.1 Sketch ... 79
6.1.2 Code ... 80

6.1.2.1 B4R Arduino UNO ... 80

6.1.2.2 B4A Android ... 81
6.2 Program HC05LightDimmer .. 83

6.2.1 Sketch ... 84

6.2.2 Code ... 85
6.2.2.1 B4R Arduino ... 85
6.2.2.2 B4A Android ... 85

6.3 Program HC05DataLogger.b4r ... 86
6.3.1 Sketch ... 87

6.3.2 Code ... 88
6.3.2.1 B4R Arduino .. 88
6.3.2.2 B4A Android .. 89

6.4 Program HC-05 DCMotor .. 91

6.4.1 Sketch ... 92
6.4.2 Code ... 93

Table of contents 4 B4R Example Projects

6.4.2.1 B4R Arduino .. 93

6.4.2.2 B4A Android .. 94
7 HC-SR04 Ultrasonic Range Sensor ... 95

7.1 HC-SR04 Simple demo project .. 96
7.1.1 Sketch ... 96

7.1.2 Code ... 97
7.1.2.1 B4R Arduino .. 97

8 ESP8266 / WeMos board D1 R2 ... 98
8.1 Difference in pin assignment Ardiono Uno > WeMos .. 99
8.2 Configuration ... 100

8.3 ESD_LEDGreen.b4r .. 103
8.3.1 Sketch ... 103
8.3.2 Code ... 104

8.4 WiFi Remote Configutation ... 105

9 FAQ .. 106
9.1 "Please save project first" message .. 106
9.2 "Are you missing a library reference" message ... 106

9.3 How loading / updating a library ... 107
9.4 Split a long line into two or more lines .. 107
9.5 "Process has timeout" message .. 108
9.6 How to pass an Array to a Sub ... 109

9.7 Select True / Case trick .. 109
10 Glossary ... 110

10.1 Electricity basics .. 110

10.2 PWM Pulse Width Modulation .. 110

Table of contents 5 B4R Example Projects

Main contributors: Klaus Christl (klaus), Erel Uziel (Erel)

To search for a given word or sentence use the Search function in the Edit menu.

All the source code and files needed for the example projects in this guide are included in the

SourceCode folder.

Covers B4R version 4.00.

Material:

• Arduino Starter Kit

• HC-05 Bluetooth module

• ESP8266 / WeMos board D1 R2 board

The diagrams for the projects were realized with the Fritzing software.

B4X Booklets:

B4X Getting Started

B4X B4X Language

B4X IDE Integrated Development Environment

B4X Visual Designer

B4X Help tools

B4XPages Cross-platform projects

B4X CustomViews

B4X Graphics

B4X XUI B4X User Interface

B4X SQLite Database

B4X JavaObject NativeObject

B4R Example Projects

https://www.arduino.cc/en/Main/ArduinoStarterKit
http://fritzing.org/home/
https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content

1 Getting started 6 B4R Example Projects

1 Getting started

B4R - The simplest way to develop native, powerful Arduino programs.

B4R follows the same concepts of the other B4X tools (B4A, B4i, B4J), providing a simple and

powerful development tool.

Compiled apps run on Arduino compatible boards.

This guide covers some more advanced topics with example projects.

Basic information on B4R is explained in the B4X booklets below:

• B4X Getting started

• B4X language

• B4X IDE Integrated Development Environment

1.1 Useful links

Useful links:

Information about the Arduino UNO in the official Arduino site.

Arduino UNO

Arduino SDK Language reference.

Arduino Language Reference.

https://www.b4x.com/android/forum/threads/b4x-documentation-booklets.88985/#content
https://www.b4x.com/guides/B4XGettingStarted.html
https://www.b4x.com/guides/B4XLanguage.html
https://www.b4x.com/guides/B4XIDE.html
https://www.arduino.cc/en/Main/ArduinoBoardUno
https://www.arduino.cc/en/Reference/HomePage

2 Arduino UNO board 7 B4R Example Projects

2 Arduino UNO board

In this chapter I will explain some basic functions of the Arduino UNO board which may be useful

as a reminder.

The Arduino UNO board is the basic board of the Arduino family.

There exist other more advanced boards.

• Arduino DUE

• Arduino MEGA

• Arduino MICRO

• etc. see Compare board specs.

Additional boards called ‘Shields’ can be clipped onto the Arduino boards.

• Arduino Wi-Fi Shield 101

• Arduino Ethernet Shield

• etc.

The Arduino UNO:

The source of the information in this chapter is a summary from the Arduino site.

Digital Input / Output pins
On board

LED 13

LED Serial

TX / RX

USB plug LED

Power ON

DC Power

plug

Power pins Analog Input pins

https://www.arduino.cc/en/Products/Compare
https://www.arduino.cc/en/Main/ArduinoBoardUno

2 Arduino UNO board 8 B4R Example Projects

2.1 Power supply

The board can be supplied with power either from the DC power jack (7 - 12V), the USB connector

(5V), or the VIN pin of the board (7-12V).

Supplying voltage via the 5V or 3.3V pins bypasses the regulator and can damage your board

(see the pins below). We do not advise it.

2.2 Pins

The Arduino UNO has 3 pin sockets:

• Power pins.

• Digital Input / Output pins.

• Analog Input pins.

2.2.1 Power pins

The Power pins are:

• GND Power ground, 2 pins.

• VIN Power supply input.

The input voltage to the Uno board when it's using an external power source (as opposed to

5 volts from the USB connection or other regulated power source). You can supply voltage

through this pin, or, if supplying voltage via the power jack, access it through this pin.

Voltage 7 – 12 V.

• 5V 5 Volt reference voltage. Don’t provide the power to this pin!

This pin outputs a regulated 5V from the regulator on the board.

• 3.3V 3.3 Volt reference voltage. Don’t provide the power to this pin!

A 3.3 volt supply generated by the on-board regulator. Maximum current draw is 50 mA.

• RESET

Bring this line LOW to reset the microcontroller. Typically used to add a reset button to

shields which block the one on the board.

• IOREF

This pin on the Uno board provides the voltage reference with which the microcontroller

operates. A properly configured shield can read the IOREF pin voltage and select the

appropriate power source or enable voltage translators on the outputs to work with the 5V or

3.3V.

2 Arduino UNO board 9 B4R Example Projects

2.2.2 Digital Input / Output pins

Each of the 14 digital pins on the Uno can be used as an input or output, using the pinMode method,

DigitalRead and DigitalWrite functions. They operate at 5 volts. Each pin can provide or receive 20

mA as recommended operating condition and has an internal pull-up resistor (disconnected by

default) of 20-50k ohm. A maximum of 40mA is the value that must not be exceeded on any I/O pin

to avoid permanent damage to the microcontroller.

In addition, some pins have specialized functions:

• Serial: 0 (RX) and 1 (TX). Used to receive (RX) and transmit (TX) TTL serial data. These

pins are connected to the corresponding pins of the ATmega8U2 USB-to-TTL Serial chip.

• PWM: ~3, ~5, ~6, ~9, ~10, and ~11. These numbers have this “~” prefix.

They can provide 8-bit PWM (Pulse Width Modulation) outputs with the AnalogWrite

function allowing to modulate the brightness of a LED (Light Emitting Diode) or run

DC motors at different speeds.

A value of 0 means always OFF and 255 means always ON.

Usage:

pinTest3.AnalogWrite(Value As UInt)
pinTest3.AnalogWrite(196)

After AnalogWrite the pin will generate a steady square wave of the specified duty cycle

until the next call to AnalogWrite (or a call to DigitalRead or DigitalWrite on the same pin).

The frequency of the PWM signal on most pins is approximately 490 Hz. On the Uno and

similar boards, pins 5 and 6 have a frequency of approximately 980 Hz. Pins 3 and 11 on the

Leonardo also run at 980 Hz.

• LED 13: There is a built-in LED driven by digital pin 13. When the pin is HIGH value, the

LED is on, when the pin is LOW, it's off.

2.2.3 Analog input pins

The Arduino UNO has 6 Analog input pins A0 to A5 with 10 bit analog to digital converters (0 to

1023 resolution).

The reference voltage is 5 Volt allowing a resolution of 4.9 mV per unit.

While the main function of the analog pins for most Arduino users is to read analog sensors, the

analog pins also have all the functionality of general-purpose input/output (GPIO) pins (the same as

digital pins 0 - 13).

2.3 Input modes INPUT / INPUT_PULLUP

If you have your pin configured as an INPUT, and are reading a switch, when the switch is in the

open state the input pin will be "floating", resulting in unpredictable results. In order to assure a

proper reading when the switch is open, a pull-up or pull-down resistor must be used. The purpose

of this resistor is to pull the pin to a known state when the switch is open. A 10 K ohm resistor is

usually chosen, as it is a low enough value to reliably prevent a floating input, and at the same time

a high enough value to not draw too much current when the switch is closed.

The INPUT_PULLUP mode adds an internal pull up resistor no need to add one externally.

With a pull up resistor the pin returns False when the switch is closed because it sets the input to 0

Volt.

2 Arduino UNO board 10 B4R Example Projects

2.4 Basic Pin functions

2.4.1 Initialize

Initializes a pin.

Pin.Initialize(Pin As Byte, Mode As Byte)

Pin is the pin number.

• 0, 1, 2, 3 etc. for digital pins

• Pin.A0, Pin.A1 , Pin.A2 etc. for analog pins.

Mode is one of the three connection modes:

• MODE_INPUT

• MODE_INPUT_PULLUP adds an internal pull up resistor.

• MODE_OUTPUT

Example1: Initialize digital pin 3 as input.
Private pinTest1 As Pin
pinTest1.Initialize(3, pinTest1.MODE_INPUT)

Example2: Initialize digital pin 3 as input with pull up resistor.
Private pinTest2 As Pin
pinTest2.Initialize(3, pinTest2.MODE_INPUT_PULLUP)

Example3: Initialize digital pin 3 as output.
Private pinTest3 As Pin
pinTest3.Initialize(3, pinTest3.MODE_OUTPUT)

Example4: Initialize analog pin 3 as input.
Private pinTest4 As Pin
pinTest4.Initialize(pinTest4.A4, pinTest4.MODE_INPUT)

The analog pins, on the Arduino UNO, can also be accessed with numbers, like:
pinTest4.Initialize(18, pinTest4.MODE_INPUT)

Pin.A0 = 14

Pin.A1 = 15

Pin.A2 = 16

Pin.A3 = 17

Pin.A4 = 18

Pin.A5 = 19

Initializing an analog pin as output works like a digital output pin.

2 Arduino UNO board 11 B4R Example Projects

2.4.2 DigitalRead

Reads the current digital value of a pin.

The return value is True or False.

Pin.DigitalRead returns a Boolean.

There are two input modes depending on the input signal.

• Pin.MODE_INPUT

• Pin. MODE_INPUT_PULLUP adds an internal pullup resistor for use with a switch.

Example:

Private pinTest1 As Pin
pinTest1.Initialize(3, pinTest.MODE_INPUT)

Private Value As Boolean
Value = pinTest1.DigitalRead

The Arduino uses internally 0 and 1 for a boolean variable.
Log("State: ", Value)

Will write either 0 for False or 1 for True in the Logs. In the code you can use False and True.

2.4.3 DigitalWrite

Writes a Boolean value to the given pin.

It can be used for all digital pins and all analog pins.

Pin.DigitalWrite (Value As Boolean)

Example:

Private pinTest3 As Pin
pinTest3.Initialize(3, pinTest3.MODE_OUTPUT)

pinTest3.DigitalWrite(True) directly with the value.

pinTest3.DigitalWrite(Value) with a variable.

2.4.4 AnalogRead

AnalogRead reads the current value of an analog pin.

The return value is an UInt with values between 0 and 1023 (10 bits).

The reference voltage is 5V.

Example:
Private pinPot As Pin
pinPot.Initialize(pinPot.A4, pinPot.MODE_INPUT)

Private Value As UInt
Value = pinPot.AnalogRead

2 Arduino UNO board 12 B4R Example Projects

2.4.5 AnalogWrite

AnalogWrite writes a Byte value to the given pin.

AnalogWrite has nothing to do with the analog pins nor with AnalogRead.

AnalogWrite can only be used on the digital pins ~3, ~5, ~6, ~9, ~10, and ~11 on the Arduino

UNO, the pins with the ~ prefix.

Pin.AnalogWrite (Value As UInt)

Example: we use digital pin ~3 which allows PWM.

Private pinTest3 As Pin
pinTest3.Initialize(3, pinTest3.MODE_OUTPUT)

pinTest3.AnalogWrite(145) directly with the value.

pinTest3.AnalogWrite(Value) with a variable, Value must be a UInt variable.

2 Arduino UNO board 13 B4R Example Projects

2.5 RunNative inline C

It is possible to use inline C code and run it with the RunNative method.

Examples:

Set pulse width frequency.

Sub SetPulseWidthFrequency

 Private pwm_freq As Int = 100 ' 100hz

 RunNative ("SetPWMFreq",Null)

End Sub

#If C
void SetPWMFreq(B4R::Object* o)
{
 analogWriteFreq(b4r_main::_pwm_freq);
}
#End If

Set AnalogSetWidth function.

RunNative ("AnalogSetWidth",Null)

#if C
void AnalogSetWidth(B4R::Object* o)
{
 analogSetWidth(10);
}
#End if

3 B4R differences versus B4A/B4J/B4i 14 B4R Example Projects

3 B4R differences versus B4A/B4J/B4i

3.1 No user interface

The biggest difference is that there is no user interface in B4R!

3.2 Memory

Memory is a big issue in Arduino.

1. The available RAM is very small compared to other platforms. For example, the Uno has 2k

of RAM.

2. There is no sophisticated heap management which means that usage of dynamic memory

should be avoided.

3. Programs are expected to run for a long time with zero memory leaks.

There are two types of variables in B4R: local variables and global variables.

Local variables are always created on the stack. This means that any object created in a sub, other

than Process_Globals, will be destroyed when the sub ends (this is not the case in other B4X tools).

Global objects, which are objects created in Process_Globals, are not stored in the stack and will

always be available.

Note that global variables, except of primitives, behave as constants. You cannot redim them and

they cannot be reassigned.

Consider this code:

Sub MySub As Pin
 Dim p As Pin
 Return p
End Sub

The compiler will throw the following error:

"Objects cannot be returned from subs (only primitives, strings and arrays of primitives are

allowed)".

The reason for this error is that the Pin object created in the sub is destroyed when MySub ends.

Primitives (numeric types and Booleans) are not problematic as the actual value is passed.

B4R does allow returning strings and arrays of primitives. It involves copying those objects in the

stack.

As a general rule, objects should be declared as process global.

3 B4R differences versus B4A/B4J/B4i 15 B4R Example Projects

3.3 Stack Buffer

B4R maintains an additional "stack" named stack buffer. This buffer is used internally when a

method needs to allocate memory. Remember that the heap is never used.

For example the NumberFormat keyword accepts a number and returns a formatted string. The

string must be allocated somewhere. It is allocated in the stack buffer. Like all other objects it will

be destroyed when the sub ends.

The buffer is also when the array size is not known during compilation.

The default size of the stack buffer is 300 bytes. This can be changed with the #StackBufferSize

attribute.

If you encounter memory issues then check the value of StackBufferUsage keyword (in the relevant

sub).

3.4 ByteConverter

ByteConverter type from the rRandomAccessFile library includes methods to convert objects and

other types to bytes and vice versa. It also allows copying objects with the ObjectCopy method.

This method can be used to copy a local object to a global variable.

Notes

• Only single dimension arrays are supported.

• Local variables are not set to zero automatically.

You can set the value in the declaration:
Dim counter As Int = 0

• Arrays are not bound checked
Dim i(10) As Int
i(10) = 100 'bad things can happen as the index of the last element is 9

B4R strings are different than in other B4X tools. The reasons for these differences are:

1. Very limited memory.

2. Lack of Unicode encoders.

A String object in B4R is the same as C char* string. It is an array of bytes with an additional zero

byte at the end.

The requirement of the last zero byte makes it impossible to create a substring without copying the

memory to a new address. For that reason, arrays of bytes are preferable over Strings. The

various string related methods work with arrays of bytes.

Converting a string to an array of bytes is very simple and doesn't involve any memory copying.

The compiler will do it automatically when needed:

Dim b() As Byte = "abc" 'equivalent to Dim b() As Byte = "abc".GetBytes

3 B4R differences versus B4A/B4J/B4i 16 B4R Example Projects

3.5 Concatenation

The & operator is not available in B4R. If you do need to concatenate strings or arrays of bytes,

then you can use JoinStrings or JoinBytes keywords. They are more efficient as they concatenate all

the elements at once.

In most cases you don't need to concatenate strings. A better solution for example when sending

strings (or bytes) with AsyncStreams:

AStream.Write("The current value is: ").Write(s).Write(" and the other value is: ")
AStream.Write(NumberFormat(d, 0,0))

This doesn’t work: Log("State: " & State)

This works: Log("State: ", State)

3 B4R differences versus B4A/B4J/B4i 17 B4R Example Projects

3.6 String methods

The standard string methods are available in ByteConverter type (rRandomAccessFile library).

They are similar to the string methods in other B4X tools:

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 Dim bc As ByteConverter
 Log("IndexOf: ", bc.IndexOf("0123456", "3")) 'IndexOf: 3
 Dim b() As Byte = " abc,def,ghijkl "
 Log("Substring: ", bc.SubString(b, 3)) 'Substring: c,def,ghijkl
 Log("Trim: ", bc.Trim(b)) 'Trim: abc,def,ghijkl
 For Each s() As Byte In bc.Split(b, ",")
 Log("Split: ", s)
 'Split: abc
 'Split: def
 'Split: ghijkl
 Next
 Dim c As String = JoinStrings(Array As String("Number of millis: ", Millis, CRLF, "N
umber of micros: ", Micros))
 Log("c = ", c)
 Dim b() As Byte = bc.SubString2(c, 0, 5)
 b(0) = Asc("X")
 Log("b = ", b)
 Log("c = ", c) 'first character will be X
End Sub

Note how both strings and array of bytes can be used as the compiler converts strings to arrays of

bytes automatically.

With the exception of JoinStrings, none of the above methods make a copy of the original string /

bytes.

This means that modifying the returned array as in the last three lines will also modify the original

array.

It will also happen with string literals that all share the same memory block:

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 Dim bc As ByteConverter
 Dim b() As Byte = bc.Trim("abcdef ")
 b(0) = Asc("M") 'this line will change the value of the literal string
 dim s as String = "abcdef "
 Log(s) 'Mbcdef
End Sub

3 B4R differences versus B4A/B4J/B4i 18 B4R Example Projects

3.7 Encoding

There is no real support for Unicode encodings in Arduino. You are always working with raw bytes.

Dim s As String = "אראל"
Log(s) 'will print correctly
Log(s.Length) '8 because each of the non-ASCII characters in this case takes two bytes

3.8 Variables

Variable types are different in B4R compared to the other B4x languages.

Some variable types don’t exist in the other B4x languages like UInt and ULong .

List of types with their ranges:

Numeric types:

Byte 0 - 255

Int (2 bytes) -32768 - 32768. Similar to Short type in other B4x tools.

UInt (2 bytes) 0 - 65535.

Long (4 bytes) -2,147,483,648 - 2,147,483,647. Similar to Int type in other B4x tools.

ULong (4 bytes) 0 - 4,294,967,295

Double (4 bytes) 4 bytes floating point. Similar to Float in other B4x tools.

Float is the same as Double. Short is the same as Int.

The above is true on all boards, including the Arduino Due.

Other types:

Boolean True or False. Practically it is saved as a byte with the value of 1 or 0.

String Strings are made from an array of bytes that end with a null byte (byte with the value of 0).

Object Objects can hold other types of values.

B4R supports only single dimension arrays!

3 B4R differences versus B4A/B4J/B4i 19 B4R Example Projects

3.9 New Keywords

There are several new Keywords in B4R which do not exist in the other B4x languages.

3.9.1 AddLooper

AddLooper (SubName As SubVoidVoid)

Adds a looper sub.

Looper is like a timer with the lowest possible interval.

There could be any number of looper subs.

Example:

AddLooper("Looper1")
'...
Sub Looper1

End Sub

Returns: void

3.9.2 AvailableRAM

AvailableRAM

Returns the available memory. This method will only work on AVR chips.

Returns: ULong

3.9.3 CallSubPlus

CallSubPlus (SubName As SubVoidByte, DelayMs As ULong, Tag As Byte)

Runs the given sub after the specified time elapses. Note that this call does not block the thread.

SubName - Sub name as literal string.

DelayMs - Delay in milliseconds.

Tag - Value that will be passed to the called sub. This is useful when multiple CallSubPlus call the

same sub.

Example:
CallSubPlus("DoSomething", 1000, 5)
'...

Sub DoSomething(Tag as Byte)

End Sub

Returns: void

3 B4R differences versus B4A/B4J/B4i 20 B4R Example Projects

3.9.4 Delay

Delay (DelayMs As ULong)

Pauses the execution for the specified delay measured in milliseconds.

Note that in most cases it is better to use a Timer or CallSubPlus instead.

Returns: void

3.9.5 DelayMicroseconds

DelayMicroseconds (Delay As UInt)

Pauses the execution for the specified delay measured in microseconds.

Returns: void

3.9.6 JoinBytes

JoinBytes (ArraysOfObjects As Object())

Concatenates the arrays of bytes to a single array.

Think carefully before using this method. In most cases there are better solutions that require less

memory (calling Write multiple times for example).

Example:
Dim b() as byte = JoinBytes(Array("abc".GetBytes, Array as Byte(13, 10)))

Returns: Byte()

3.9.7 JoinStrings

JoinStrings (Strings As String())

Concatenates the strings to a single string.

Think carefully before using this method. In most cases there are better solutions that require less

memory.

Example:
Dim s As String = JoinStrings(Array As String("Pi = ", cPI))

Returns: B4RString

3 B4R differences versus B4A/B4J/B4i 21 B4R Example Projects

3.9.8 MapRange

MapRange (Value As Long, FromLow As Long, FromHigh As Long, ToLow As Long, ToHigh

As Long)

Maps the value from the "from" range to the "to" range.

Example:
Dim v as Int = MapRange(p.AnalogRead, 0, 1023, 0, 255)

Returns: Long

3.9.9 Micros

Returns the number of microseconds since the last restart.

Note that this value overflows (goes back to zero) after approximately 70 minutes.

Returns: ULong

3.9.10 Millis

Returns the number of milliseconds since the last restart.

Returns: ULong

3.9.11 StackBufferUsage

Returns the usage of the stack memory buffer (set with #StackMemoryBuffer attribute).

Returns: UInt

3 B4R differences versus B4A/B4J/B4i 22 B4R Example Projects

3.10 Variable Types

List of types with their ranges:

Numeric types:

Byte 0 - 255

Int (2 bytes) -32768 - 32768. Like Short type in other B4x tools.

UInt (2 bytes) 0 - 65535. B4R specific.

Long (4 bytes) -2,147,483,648 - 2,147,483,647. Like Int type in other B4x tools.

ULong (4 bytes) 0 - 4,294,967,295 B4R specific.

Double (4 bytes) 4 bytes floating point. Like Float in other B4x tools.

Float is the same as Double. Short is the same as Int.

The above is true on all boards, including the Arduino Due.

Other types:

Boolean True or False. Practically it is saved as a byte with the value of 1 or 0.

String Strings are made from an array of bytes that end with a null byte (byte with the value of 0).

Object Objects can hold other types of values.

Primitive types are always passed by value to other subs or when assigned to other variables.

For example:

Sub S1
 Private A As Int

 A = 12 The variable A = 12

 S2(A) It's passed by value to routine S2

 Log(A) ' Prints 12 Variable A still equals 12, even though B was changed in routine S2.
End Sub

Sub S2(B As Int) Variable B = 12

 B = 45 Its value is changed to B = 45
End Sub

All other types, including arrays of primitive types and strings are categorized as non-primitive

types.

When you pass a non-primitive to a sub or when you assign it to a different variable, a copy of the

reference is passed.

This means that the data itself isn't duplicated.

It is slightly different than passing by reference as you cannot change the reference of the original

variable.

3 B4R differences versus B4A/B4J/B4i 23 B4R Example Projects

3.10.1 Array variables

Arrays are collections of data or objects that can be selected by indices. Arrays can have multiple

dimensions.

The declaration contains the Private or the Public keyword followed by the variable name Name,

the number of items between brackets (5), the keyword As and the variable type String.

There does exist the Dim keyword, this is maintained for compatibility.

B4R supports only single dimension arrays !

Examples:

Public Name(5) As String One-dimension array of strings, total number of items 5.

Public Pins(5) As Pin One-dimension array of pins, total number of items 5.

The first index of the dimension is 0.
Name(0)

The last index is equal to the number of items minus 1.
Name(4)

In the other B4x products the declaration below is possible, but NOT in B4R.

 Public NbNames = 10 As Int
 Public Name(NbNames) As String

It throughs this error:

The size value must be a numeric literal like!
Public Name(10) As String

Filling an array with the Array keyword:

 Public Days() As String
 Days = Array As String("Monday", "Tuesday", "Wedensday", "Thursday" . . .)

3 B4R differences versus B4A/B4J/B4i 24 B4R Example Projects

3.10.2 Array of objects

Objects can also be in an Array. The following code shows an example:

In the example below 4 Pins are used for LEDs and 2 Pins used for pushbuttons.

The example is based on the ObjectArrays project.

Sub Process_Globals
 Public pinLEDs(4) As Pin
 Public pinButtons(2) As Pin
End Sub

Private Sub AppStart
 Private i As Int

 For i = 0 To 3
 pinLEDs(i).Initialize(i + 7, pinLEDs(i).MODE_OUTPUT)
 Next

 For i = 0 To 1
 pinButtons(i).Initialize(i + 18, pinButtons(i).MODE_INPUT_PULLUP)
 pinButtons(i).AddListener("pinButtons_StateChanged")
 Next

End Sub

Private Sub pinButtons_StateChanged (State As Boolean)
 Private p As Pin

 Log("State: ", State) 'Log the State value

 p = Sender
 Log("Pin Number: ", p.PinNumber) 'Log the Pin Number

 Select p.PinNumber
 Case 18
 'your code for the pushbutton on pin 18 Analog pin A4
 Case 19
 'your code for the pushbutton on pin 19 Analog pin A5
 End Select
End Sub

In B4R this code doesn’t work:

Sub Process_Globals
 Public NbLEDs = 4 As Int
 Public pinLEDs(NbLEDs) As Pin
End Sub

It throughs this error:

The size value must be a numeric literal!

3 B4R differences versus B4A/B4J/B4i 25 B4R Example Projects

3.10.3 Type variables

A Type cannot be private. Once declared it is available everywhere.

The only place to declare them is in the Process_Globals routine in the Main module.

We will use a Type variable for LEDs.

A type variable is defined with the Type keyword followed by a list of variables:

 Type Leds(PinNumber As Byte, Color As String, State As String)
 Public PowerLed As Leds
 Public Led(4) As Leds

The new personal type is Leds, then we declare either single variables or arrays of this personal

type.

To access a particular item use following code.
 Led(0).Color = "Blue"
 Led(0).PinNumber = 0
 Led(0).State = "ON"

The variable name, followed by a dot and the desired parameter.

If the variable is an array, then the name is followed by the desired index between brackets.

It is possible to assign a typed variable to another variable of the same type, as shown below.

 PowerLed = Led(1)

3 B4R differences versus B4A/B4J/B4i 26 B4R Example Projects

3.11 Casting

B4R casts types automatically as needed. It also converts numbers to strings and vice versa

automatically.

In some cases, you need to explicitly cast an Object to a specific type.

This can be done by assigning the Object to a variable of the required type.

For example, the Sender keyword references an Object which is the object that raised the event.

The following code changes the state of a LED according to the state of a switch.

Note that there are three switches sharing the same event sub.

Sub Process_Globals
 Public Serial1 As Serial

 Public pinSwitch(3) As Pin
 Public pinLed(3) As Pin
End Sub

Private Sub AppStart
 Serial1.Initialize(115200)

 Private i As Int
 For i = 0 To 2
 pinSwitch(i).Initialize(i, pinSwitch(i).MODE_INPUT_PULLUP)
 pinSwitch(i).AddListener("pinSwitches")

 pinLed(i).Initialize(1 + 3, pinLed(i).MODE_OUTPUT)
 Next
End Sub

Private Sub pinSwitches_StateChanged (State As Boolean)
 Private Switch As Pin

 Switch = Sender

 pinLed(Switch.PinNumber + 3).DigitalWrite(Switch.DigitalRead)
End Sub

4 First example programs 27 B4R Example Projects

4 First example programs

All the projects were realized with the Arduino Starter Kit.

The diagrams for the projects were realized with the Fritzing software.

When we run the IDE, we get the default code like below.

The #Region Project Attributes is normally collapsed; only the attributes are used with B4R.

Leave them as they are.

Region Project Attributes
 #AutoFlushLogs: True
 #CheckArrayBounds: True
 #StackBufferSize: 300
#End Region

Sub Process_Globals
 'These global variables will be declared once when the application starts.
 'Public variables can be accessed from all modules.
 Public Serial1 As Serial
End Sub

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
End Sub

Public Serial1 As Serial Defines the serial interface with the computer.

Serial1.Initialize(115200) Initializes the serial port with a Baud rate of 115200 Hertz.

Log("AppStart") Shows AppStart in the Logs when the program starts.

https://www.arduino.cc/en/Main/ArduinoStarterKit
http://fritzing.org/home/

4.1 Button.b4r 28 B4R Example Projects

4.1 Button.b4r

Let us write our first program.

It’s like Erels Button example from the forum. It uses a pushbutton switch and the Led 13 on the

Arduino UNO board.

The project Button.b4r is available in the SourceCode folder.

• Open B4R.

• Save the project as Button in a folder with the name Button.

• Build the board with the pushbutton and the wires.

• Connect the Arduino to the PC.

• Write the code.

• Run the program.

4.1.1 Sketch

Material:

• 1 pushbutton switch

Connect one Arduino GND (ground) pin to the

ground GND line of the breadboard.

Then connect one pin of the pushbutton switch to

the ground line.

And connect the other pin of the pushbutton to pin

A5 of the Arduino analog pins.

We could have connected the first pin of the

pushbutton directly to the GDN pin of the Arduino,

but the connection in the image is ready for the next

examples.

We could also have used one of the digital pins

instead of the analog pin.

4.1 Button.b4r 29 B4R Example Projects

4.1.2 Code

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton As Pin 'pin for the button
 Private pinLED13 As Pin 'pin for LED 13 on the Arduino
End Sub

We declare the pins for the pushbutton and the on board Led 13.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
'Using the internal pull up resistor to prevent the pin from floating.

 pinButton.AddListener("pinButton_StateChanged")

 pinLED13.Initialize(13, pinLED13.MODE_OUTPUT)
End Sub

We initialize pinButton, as the analog pin A5, with pinButton.A5 and set the input mode to

pinButton.MODE_INPUT_PULLUP. We need a pullup resistor to prevent the pin from floating,

MODE_INPUT_PULLUP connects an internal pull up resistor.

We add pinButton.AddListener("pinButton_StateChanged"), to generate a StateChanged event

when the state of pin pinButton changes which means that the pushbutton is pressed or released.

We initialize pinLED13, as the onboard Led as digital pin 13 and set the output mode to
pinLED13.MODE_OUTPUT.

Sub pinButton_StateChanged (State As Boolean)
 Log("State: ", State)
 'state will be False when the button is clicked because of the PULLUP mode.
 pinLED13.DigitalWrite(Not(State))
End Sub

We add a Log, Log("State: ", State), to display the state in the Logs.

We write the State to the digital output of the on board led, pinLED13.DigitalWrite(Not(State)).

We write Not(State) because State will be False when the pushbutton is pressed because of the

PULLUP mode.

Click on or press F5 to run the code.

When you press the pushbutton, led 13 on the Arduino UNO will be ON and when you release the

pushbutton led 13 will be OFF.

4.2 LedGreen.b4r 30 B4R Example Projects

4.2 LedGreen.b4r

For this project we use a copy of the Button project.

Create a new LedGreen folder, copy the files of the Button project and rename the Button.xxx files

to LedGreen.xxx.

We add a green Led which can be switched on and off with the button from the first example.

The project LedGreen.b4r is available in the SourceCode folder.

4.2.1 Sketch

Material:

• 1 pushbutton switch

• 1 green LED

• 1 220 Ω resistor

We keep the mounting of the pushbutton switch

from the first example.

One pin on the GND line of the breadboard.

The other pin to digital pin 7 on the Arduino.

And we

- Add a green Led on the breadboard.

- Connect the cathode (-) via a 220 Ω resistor to the

 ground GND line of the breadboard.

- Connect the anode (+) to digital pin 7.

4.2 LedGreen.b4r 31 B4R Example Projects

4.2.2 Code

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton As Pin 'pin for the button
 Private pinLEDGreen As Pin 'pin for the green Led
 Private LightOn = False As Boolean
End Sub

We keep the definition of pinButton.

We change the definition
Private pinLED13 As Pin

to
Private pinLEDGreen As Pin

for the green Led

We add a global Boolean variable LightOn which is True when the light is ON.

Private Sub AppStart
 Serial1.Initialize(115200)

 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.AddListener("pinButton_StateChanged")

 pinLEDGreen.Initialize(7, pinLEDGreen.MODE_OUTPUT)
End Sub

We leave the code for pinButton.

We initialize pinLEDGreen as digital pin 7 and set the output mode to pinLEDGreen.MODE_OUTPUT.

Private Sub pinButton_StateChanged (State As Boolean)
 If State = False Then 'remember, False means button pressed.
 LightOn = Not(LightOn)
 pinLEDGreen.DigitalWrite(LightOn)
 End If
End Sub

Every time State is False, pushbutton pressed, we change the variable LightOn and write it to

pinLEDGreen.

4.3 LedGreenNoSwitchBounce.b4r 32 B4R Example Projects

4.3 LedGreenNoSwitchBounce.b4r

For this project we use the same circuit as LedGreen.b4r.

The only difference is in the code.

The project LedGreenNoSwitchBounce.b4r is available in the SourceCode folder.

The pushbutton switch we use in our projects has a problem called bouncing.

The signal of a mechanical switch is not clean, the switch has several bounces which are interpreted

by the digital inputs as several state changes. If we have an even number of state changes it is

similar to having done nothing.

But we want only one state change per button press.

Image of switch bouncing (source Wikipedia):

The switch bounces between on and off several times before settling.

To solve this problem, we don’t react in the pinButton_StateChanged routine on state changes

within a given time.

https://en.wikipedia.org/wiki/Switch

4.3 LedGreenNoSwitchBounce.b4r 33 B4R Example Projects

4.3.1 Sketch

Material:

• 1 pushbutton switch

• 1 green LED

• 1 220 Ω resistor

We keep the mounting of the pushbutton switch

from the first example.

One pin on the GND line of the breadboard.

The other pin to digital pin 7 on the Arduino.

And we

- Add a green Led on the breadboard.

- Connect the cathode (-) via a 220 Ω resistor to the

 ground GND line of the breadboard.

- Connect the anode (+) to digital pin 7.

4.3 LedGreenNoSwitchBounce.b4r 34 B4R Example Projects

4.3.2 Code

The code is almost the same as LedGreen.b4r.

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton As Pin 'pin for the button
 Private pinLEDGreen As Pin 'pin for the green Led
 Private LightOn = False As Boolean
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

We add two new variables: BounceTime and BounceDelay.

Private Sub AppStart
 Serial1.Initialize(115200)

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLEDGreen.Initialize(7, pinLEDGreen.MODE_OUTPUT)
End Sub

Same as LedGreen.b4r

New pinButton_StateChanged routine:

Private Sub pinButton_StateChanged (State As Boolean)
 If State = False Then 'remember, False means button pressed.
 If Millis - BounceTime < BounceDelay Then
 Return 'Return, bouncing
 Else
 LightOn = Not(LightOn)
 pinLEDGreen.DigitalWrite(LightOn)
 BounceTime = Millis 'reset BounceTime to current time
 End If
 End If
End Sub

Every time State is False, pushbutton pressed:

• We check if the time between the current state change and the first state change.

If the time is shorter than BounceDelay, which means a bounce, we do nothing.

If the time is longer than BounceDelay, which means a real state change, we execute the

code.

• We change the variable LightOn and write it to pinLEDGreen.

• Set the new BounceTim

5 More advanced programs 35 B4R Example Projects

5 More advanced programs Arduino Uno

All the projects were realized with the Arduino Starter Kit.

The diagrams for the projects were realized with the Fritzing software.

5.1 TrafficLight.b4r

This project is an evolution of the LedGreen project and simulates traffic lights.

We use a copy of the LedGreen project.

Create a new TrafficLight folder, copy the files of the LedGreen project and rename the

LedGreen.xxx files to TrafficLight.xxx.

The lights can be switched on and off with the pushbutton switch from the previous examples.

The timing for the change from red to green and green to red is managed

with a Timer TimerGreenRed and the duration of the yellow light is managed

with a second Timer TimerYellow.

The project TrafficLight.b4r is available in the SourceCode folder.

5.1.1 Sketch

Material:

• 1 pushbutton switch

• 1 green Led

• 1 yellow Led

• 1 red led

• 3 220 Ω resistors

We

- add a yellow and a red Led similar to the green

one.

- connect the yellow led (+) to digital pin 8.

- connect the red led (+) to digital pin 9.

https://www.arduino.cc/en/Main/ArduinoStarterKit
http://fritzing.org/home/
https://www.b4x.com/guides/B4XLanguage.html#pf71

5.1 TrafficLight.b4r 36 B4R Example Projects

5.1.2 Code

Sub Process_Globals
 Public Serial1 As Serial

 Private pinButton As Pin 'pin for the button
 Private pinLEDGreen, pinLEDYellow, pinLEDRed As Pin 'pins for the Leds

 Private TimerGreenRed, TimerYellow As Timer
 Private LightOn = False As Boolean
 Private LightGreen = False As Boolean
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

We declare the button and the three led Pins, the two Timers and two global

variables LightOn and LightGreen.

LightOn = False > light OFF

LightGreen = True > green light ON

Private Sub AppStart
 Serial1.Initialize(115200)

 TimerGreenRed.Initialize("TimerGreenRed_Tick", 2000)
 TimerYellow.Initialize("TimerYellow_Tick", 500)

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLEDGreen.Initialize(7, pinLEDGreen.MODE_OUTPUT)
 pinLEDYellow.Initialize(8, pinLEDYellow.MODE_OUTPUT)
 pinLEDRed.Initialize(9, pinLEDRed.MODE_OUTPUT)
End Sub

We initialize TimerGreenRed with the Tick event ("TimerGreenRed_Tick" and an interval of 2000

which means that the Tick event is raised every 2 seconds (2000 milli seconds).

We initialize TimerYellow with the Tick event ("TimerYellow_Tick" and an interval of 500 which

means that the Tick event is raised every 0.5 second (500 milli seconds).

We keep the code for the button and the green Led, initialize pinLEDYellow as digital pin 8 as output

and initialize pinLEDRed as digital pin 9 as output.

5.1 TrafficLight.b4r 37 B4R Example Projects

The code is hopefully self-explanatory.

Private Sub pinButton_StateChanged (State As Boolean)
' Log("State: ", State) 'Log the State value

 If State = False Then 'if State = False
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 pinLEDRed.DigitalWrite(True) 'switch ON the red LED
 LightOn = Not(LightOn) 'change the value of LightOn
 BounceTime = Millis
' Log("Light: ", LightOn) 'Log the LightOn value

 TimerGreenRed.Enabled = LightOn 'enable TimerGreenRed Timer

 If LightOn = False Then 'if LightOn = False
 pinLEDGreen.DigitalWrite(False) 'switch OFF LED Green
 pinLEDYellow.DigitalWrite(False) 'switch OFF LED Yellow
 pinLEDRed.DigitalWrite(False) 'switch OFF LED Red
 End If
 End If
 End If
End Sub

Private Sub TimerGreenRed_Tick
 If LightGreen = True Then 'if LightGreen = True
' Log("TimerGreenRed_Tick LightYellow") 'write the Log
 TimerYellow.Enabled = True 'enable TimerYellow
 pinLEDGreen.DigitalWrite(False) 'switch OFF LED Green
 pinLEDYellow.DigitalWrite(True) 'switch ON LED Yellow
 LightGreen = False 'set LightGreen to False
 Else
' Log("TimerGreenRed_Tick LightGreen") 'write the Log
 pinLEDRed.DigitalWrite(False) 'switch OFF LED Red
 pinLEDGreen.DigitalWrite(True) 'switch ON LED Green
 LightGreen = True 'set LightGreen to True
 End If
End Sub

Private Sub TimerYellow_Tick
' Log("TimerYellow_Tick LightRed") 'write the Log
' Log(" ")
 pinLEDYellow.DigitalWrite(False) 'switch OFF LED Yellow
 pinLEDRed.DigitalWrite(True) 'switch ON LED Red
 TimerYellow.Enabled = False 'disable Timer TimerYellow
End Sub

We can switch ON or OFF the traffic lights with the pushbutton switch.

Instead of a Timer we could have used CallSubPlus, it’s equivalent to a Timer but fired only one

time. CallSubPlus is used in the PulsWidthModulation project.

5.2 LightDimmer.b4r 38 B4R Example Projects

5.2 LightDimmer.b4r

In this project we use a button, a led and a potentiometer.

With the pushbutton we switch the light ON or OFF.

With the potentiometer we modulate the brightness of a LED.

The project LightDimmer.b4r is available in the SourceCode folder.

5.2.1 Sketch

Material:

• 1 pushbutton switch

• 1 blue LED

• 1 potentiometer

• 1 220 Ω resistor

- The pushbutton switch is the same as in the

previous examples.

One pin on GRD and the other one on pin A5.

- The blue LED is connected similar like in the

other examples.

Cathode (-) via a 220 Ω resistor to GND.

Anode (+) to digital pin ~10.

This pin allows PWM analog outputs.

We connect the 5V pin to the + line of the

breadboard.

- add a potentiometer which acts as a voltage

divider.

- connect one of its ends to the 5V line.

- connect the other end to the GND line.

- connect the slider to pin A1.

5.2 LightDimmer.b4r 39 B4R Example Projects

5.2.2 Code

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton, pinPot, pinLedBlue As Pin
 Private Reading = False As Boolean
 Private Timer1 As Timer
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

We declare the three Pins, a global variable Reading which is True when we are reading and a

Timer to read every 200 ms the value of pin A1 and write its value to digital pin ~10 to dim or

brighten the light.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLedBlue.Initialize(10, pinLedBlue.MODE_OUTPUT)

 pinPot.Initialize(pinPot.A1, pinPot.MODE_INPUT)

 Timer1.Initialize("Timer1_Tick", 200)
End Sub

We initialize the three pins and the Timer.

Sub pinButton_StateChanged (State As Boolean)
 Log("state: ", State)
 'state will be False when the button is clicked because of the PULLUP mode.
 If State = False Then
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 Reading = Not(Reading)
 BounceTime = Millis
 Timer1.Enabled = Reading
 Log("Reading: ", Reading)
 If Reading = False Then
 pinLedBlue.AnalogWrite(0)
 End If
 End If
 End If
End Sub

When State = False (button down) we invert the value of Reading,

Set Timer Timer1.Enabled = Reading.

And if Reading = False (stop reading) switch off the light pinLedBlue.AnalogWrite(0).

5.2 LightDimmer.b4r 40 B4R Example Projects

Private Sub Timer1_Tick
 Private Value As UInt
 Value = pinPot.AnalogRead
 Log("Value = ", Value)
 pinLedBlue.AnalogWrite(Value / 4)
End Sub

We declare a local variable Value and read the value of the pot slider on pin A1.

Then we write Value / 4 to pinLedBlue.

We write Value to the Logs.

We need to divide Value by 4 because the max value of an analog input is 1023 (10 bits) and the

max value we can write to an analog output is 255 (8 bits).

We could also use this shorter code.

Private Sub Timer1_Tick
 pinLedBlue.AnalogWrite(pinPot.AnalogRead / 4)
End Sub

5.3 DCMotor.b4r 41 B4R Example Projects

5.3 DCMotor.b4r

In this project we use a pushbutton switch, a DC motor, a potentiometer and a 9V battery.

With the pushbutton we switch the motor on or off.

With the potentiometer we modulate the speed of the motor.

The project is based on the LightDimmer project, the DC motor (TFK-280SA-22125) replaces the

blue Led and we need some more components to drive the motor.

• A 9V battery providing the power.

The motor needs more power than the Arduino can provide.

• A MOSFET power transistor (IRF520NPbF), which acts as a ‘power switch’.

• A diode (1N4007) to protect the motor.

It is inspired by a project in the Arduino Starter Kit.

The project DCMotor.b4r is available in the SourceCode folder.

5.3.1 Sketch

Material:

• 1 push button switch

• 1 DC motor TFK-280SA-22125

• 1 9V battery

• 1 potentiometer

• 1 MOSFET transistor IRF520NPbF

• 1 diode 1N4007

The button and the potentiometer are the same

as in the LightDimmer project.

First we connect the two GND lines of the

breadboard. The GND of the Arduino board

and the GND (-) of the 9V battery must be at

the same level.

Then we add the MOSFET transistor, the

motor, the diode, the 9V battery and the

connecting wires like in the diagram.

We use the digital output pin ~10 to drive the

motor.

https://www.arduino.cc/documents/datasheets/DCmotor.PDF
https://www.arduino.cc/documents/datasheets/MosfetTransistor.pdf
https://www.arduino.cc/documents/datasheets/Diodes.pdf
https://www.arduino.cc/documents/datasheets/DCmotor.PDF
https://www.arduino.cc/documents/datasheets/MosfetTransistor.pdf
https://www.arduino.cc/documents/datasheets/Diodes.pdf

5.3 DCMotor.b4r 42 B4R Example Projects

5.3.2 Code

And the code is almost the same as the LightDimmer project.

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton, pinPot, pinMotor As Pin
 Private Reading = False As Boolean
 Private Timer1 As Timer
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

We declare the three Pins, a global variable Reading which is True when we are reading and a

Timer to read every 200 ms the value of pin A1.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinMotor.Initialize(10, pinMotor.MODE_OUTPUT)

 Timer1.Initialize("Timer1_Tick", 200)

 pinPot.Initialize(pinPot.A1, pinPot.MODE_INPUT)
End Sub

We initialize the three pins and the Timer.

Sub pinButton_StateChanged (State As Boolean)
 Log("state: ", State)
 'state will be False when the button is clicked because of the PULLUP mode.
 If State = False Then
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 Reading = Not(Reading)
 BounceTime = Millis
 Timer1.Enabled = Reading
 Log("Reading: ", Reading)
 If Reading = False Then
 pinMotor.AnalogWrite(0)
 End If
 End If
 End If
End Sub

When State = False (button down) we invert the value of Reading,

Set the Timer Timer1.Enabled = Reading.

And if Reading = False (stop reading) switch off the motor.

5.3 DCMotor.b4r 43 B4R Example Projects

Private Sub Timer1_Tick
 Private Value As UInt
 Value = pinPot.AnalogRead
 Log("Value = ", Value)
 pinMotor.AnalogWrite(Value / 4)
End Sub

We declare a local variable Value and read the value of the pot slider on pin A1.

Then we write Value / 4 to pinMotor.

We need to divide Value by 4 because the max value of an analog input is 1023 (10 bits) and the

max value we can write to an analog output is 255 (8 bits).

5.4 DCMotorHBridge.b4r 44 B4R Example Projects

5.4 DCMotorHBridge.b4r

This example is also inspired by an Arduino Starter Kit example.

In the previous example we could modulate the speed only in one direction. In the example below

we can change the direction of the motor with a pushbutton switch.

With the right pushbutton we switch the motor ON or OFF.

With the left pushbutton we change the motor direction.

With the potentiometer we modulate the motor speed.

The project DCMotorHBridge.b4r is available in the SourceCode folder.

We use a specialized H-bridge integrated circuit to supply the power to the DC motor, a L293D

circuit. This circuit allows to change the motion direction of the motor.

This circuit needs two power supplies, one 5V supply for its internal logic circuits, pin 16, and a

power supply for the motor (5 to 36V), a 9V battery in our example (pin 8).

Pins 4 and 5 are the GND pins, the two grounds (5V and 9V must be at the same level).

Pin 2 is used to manage the motor speed, a PWM signal.

Pin 1 and pin 7 are used to change the motion direction.

Pin 1 LOW and pin 7 HIGH one direction.

Pin 1 HIGH and pin 7 LOW the opposite direction.

Both pins LOW or HIGH, the motor stops.

Pin 3 and pin 6 provide the power for the motor.

https://en.wikipedia.org/wiki/H_bridge
http://www.ti.com/lit/ds/symlink/l293.pdf

5.4 DCMotorHBridge.b4r 45 B4R Example Projects

5.4.1 Sketch

Material:

• 2 push button switches

• 1 DC motor TFK-280SA-22125

• 1 9V battery

• 1 potentiometer

• 1 IC L293D circuit

We connect:

Arduino GND pin to GND line of the breadboard.

Arduino 5V pin to 5V line of the breadboard.

The GND wire of the 9V battery to other GND

line of the breadboard.

The 9V wire of the 9V battery to 9V line of the

breadboard.

Both GND lines of the breadboard.

Both switches, one side to the GND line.

The other pin of the right switch, to switch ON or

OFF the motor, to analog pin A5.

The other pin of the left switch, to change the

direction of the motor, to analog pin A3.

The potentiometer, one end to the GND line, the

other end to the 5V line and the slider to analog pin

A1.

For the IC (pin 1 is the upper right one):

Pin 1 to digital 2.

Pin 2 to digital ~10.

Pin 3 to one wire of the DC motor.

Pin 4 and 5 to the GND line.

Pin 6 to the second wire of the DC motor.

Pin 7 to digital pin 3.

 Pin 16 to the 9V line.

https://www.arduino.cc/documents/datasheets/DCmotor.PDF
http://www.ti.com/lit/ds/symlink/l293.pdf

5.4 DCMotorHBridge.b4r 46 B4R Example Projects

5.4.2 Code

Sub Process_Globals
 Public Serial1 As Serial

 Private MotorON = False As Boolean 'motor ON or OFF, ON = True
 Private MotorDirection = False As Boolean 'motor direction
 Private MotorSpeed = 0 As UInt

 Private TimerMotor As Timer
 Private pinSwitchMotorONOFF, pinSwitchMotorDirection, pinMotorSpeed,
pinMotorControl1, pinMotorControl2, pinPot As Pin

 Private BounceTimeMotorON, BounceTimeMotorDirection As ULong
 Private BounceDelay = 10 As ULong
End Sub

We declare different variables and the different Pins:

Variables:

• MotorON true motor ON, False motor OFF.

• MotorDirection True one direction, False the other direction.

• MotorSpeed value for the motor speed.

Pins:

• pinSwitchMotorONOFF to the switch the motor ON or OFF

• pinSwitchMotorDirection to change the motor motion direction.

• pinMotorSpeed to change the motor speed.

• pinMotorControl1 and pinMotorControl2 to change the motor motion direction.

• pinPot for the potentiometer slider.

We use a Timer, TimerMotor, to read the value of the position of the potentiometer slider, calculate

the motor speed value and write it to the motor speed pin.

We use two variables BounceTimeMotorON and BounceTimeMotorDirection for the anti-bouncing of

the switches.

5.4 DCMotorHBridge.b4r 47 B4R Example Projects

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 TimerMotor.Initialize("TimerMotor_Tick", 200)

 pinSwitchMotorONOFF.Initialize(pinSwitchMotorONOFF.A5,
pinSwitchMotorONOFF.MODE_INPUT_PULLUP)
 pinSwitchMotorONOFF.AddListener("pinSwitchMotorONOFF_StateChanged")
 pinSwitchMotorDirection.Initialize(pinSwitchMotorONOFF.A3,
pinSwitchMotorDirection.MODE_INPUT_PULLUP)
 pinSwitchMotorDirection.AddListener("pinSwitchMotorDirection_StateChanged")
 pinMotorControl1.Initialize(2, pinMotorControl1.MODE_OUTPUT)
 pinMotorControl2.Initialize(3, pinMotorControl1.MODE_OUTPUT)
 pinMotorSpeed.Initialize(9, pinMotorSpeed.MODE_OUTPUT)

 pinPot.Initialize(pinPot.A1, pinPot.MODE_INPUT)

 pinMotorControl1.DigitalWrite(MotorDirection)
 pinMotorControl2.DigitalWrite(Not(MotorDirection))

End Sub

We initialize the different pins and add the event routine declarations.

Private Sub pinSwitchMotorONOFF_StateChanged (State As Boolean)
 If State = False Then
 If Millis - BounceTimeMotorON < BounceDelay Then
 Return
 Else
 MotorON = Not(MotorON)
 If MotorON = True Then
 TimerMotor.Enabled = MotorON
 Else
 pinMotorSpeed.AnalogWrite(0)
 End If
 BounceTimeMotorON = Millis
 End If
 Log("MotorON: ", MotorON)
 End If
End Sub

Similar to the StateChange event routines in the other projects, the same for
Private Sub pinSwitchMotorDirection_StateChanged (State As Boolean)

Private Sub TimerMotor_Tick
 If MotorON = True Then
 MotorSpeed = pinPot.AnalogRead / 4
' Log("MotorSpeed: ", MotorSpeed)
 pinMotorSpeed.AnalogWrite(MotorSpeed)
 End If
End Sub

Similar to the Timer event routines in the other projects.

5.5 ServoMotor.b4r 48 B4R Example Projects

5.5 ServoMotor.b4r

In this project we use a pushbutton switch, a servo motor and a potentiometer.

With the pushbutton we switch the motor on or off.

With the potentiometer we modulate the position of the servo motor.

The servo motor position range is between 0 and 180°.

The project is based on the LightDimmer project, the servo motor Spring RC SM - S2309S replaces

the blue Led.

It is inspired by a project in the Arduino Starter Kit.

The project ServoMotor.b4r is available in the SourceCode folder.

5.5.1 Sketch

Material:

• 1 pushbutton switch

• 1 potentiometer

• 1 servo motor

• 2 100 μF capacitors

The pushbutton switch is the same as in the

previous examples.

One pin on GRD and the other one on pin A5.

The potentiometer has:

One end connected to the 5V line, the other end to

the GND line and the slider to pin A1.

We add a servo motor.

- connect the red wire to the 5V line.

- connect the black wire to the GND line.

- connect the white wire to digital pin ~10.

This pin allows PWM analog outputs.

5.5 ServoMotor.b4r 49 B4R Example Projects

5.5.2 Code

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton, pinPot, pinMotor As Pin
 Private Reading = False As Boolean
 Private Timer1 As Timer
 Private Angle = 0 As UInt
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinMotor.Initialize(10, pinMotor.MODE_OUTPUT)

 Timer1.Initialize("Timer1_Tick", 200)

 pinPot.Initialize(pinPot.A1, pinPot.MODE_INPUT)
End Sub

Similar to the other projects.

Sub pinButton_StateChanged (State As Boolean)
 Log("state: ", State)
 'state will be False when the button is clicked because of the PULLUP mode.
 If State = False Then
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 Reading = Not(Reading)
 BounceTime = Millis
 Timer1.Enabled = Reading
 Log("Reading: ", Reading)
 pinMotor.AnalogWrite(128)
 End If
 End If
End Sub

Similar as in the other projects.

5.5 ServoMotor.b4r 50 B4R Example Projects

Private Sub Timer1_Tick
 Private Value As UInt
 Value = pinPot.AnalogRead
' Angle = MapRange(Value, 0, 1023, 0, 180)
' Angle = MapRange(Value, 0, 1023, 0, 255)
 Angle = MapRange(Value, 0, 1023, 40, 225)
 Log("Angle = ", Angle)
 pinMotor.AnalogWrite(Angle)
End Sub

We use a timer to read the output of the pot slider at analog pin A1.

Then we calculate an angle and write it to digital pin 10.

In the Arduino Starter Kit documentation, the angle written should be between 0 and 180.

Unfortunately, the position range is smaller than 180° and with values near 0 the behavior is not

OK.

I haven’t found any data sheet specifying the input signal.

I tried with values between 0 and 255 but with values near 0 and with values near 255 the behavior

is not correct.

My experience to have a correct behavior are values between 40 and 225 for a position range of

180°.

5.6 PulseWidthModulation.b4r 51 B4R Example Projects

5.6 PulseWidthModulation.b4r

This project shows the principle of PulseWidthModulation.

The pulse period is constant, and the pulse width can have a value between 0 (0% modulation) and

the pulse period length (100% modulation).

The value of PulsePeriod can be set in the program and the PulseWidth is calculated in function of a

potentiometer slider position.

It is based on the LightDimmer project.

The project PulseWidthModulation.b4r is available in the SourceCode folder.

Pulse Width Modulation:

PulsePeriod can be defined in the code and remains constant.

PulseWidth is variable, between 0 (0%) and PulsePeriod (100% modulation).

I used a LED in the project to show the principle with relatively big value for PulsePeriod.

The principle is the same as the PWM output of the digital pins with the “~” prefix, but the pulse

period is much smaller.

PulseWidth

PulsePeriod

PulseWidth

PulsePeriod

5.6 PulseWidthModulation.b4r 52 B4R Example Projects

5.6.1 Sketch

The circuit is the same as the LightDimmer circuit.

Material:

• 1 push button switch

• 1 LED

• 1 potentiometer

• 1 220 Ω resistor

Pushbutton, one pin connected to the GND line of

the breadboard and the other pin connected to

analog pin 5 of the Arduino ONE.

LED cathode (-) connected to the GND line of the

breadboard via a 220 Ω resistor.

LED anode (+) connected to digital pin 10.

Potentiometer, one pin connected to the GND line

of the breadboard, the other pin connected to the

5V line of the breadboard, and the slider connected

to analog pin 2 of the Arduino ONE.

5.6 PulseWidthModulation.b4r 53 B4R Example Projects

5.6.2 Code

We use a Timer TimerPulsePeriod to generate each pulse with the period PulsePeriod.

In the TimerPulsePeriod_Tick routine we switch the LED ON and call CallSubPlus to switch the

LED OFF after the time PulseWidth has elapsed.

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton, pinPot, pinLED As Pin
 Private StateON_OFF = False As Boolean 'reading ON or OFF
 Private TimerPulsePeriod As Timer 'Timer for PulsePeriod
 Private PulseWidth As ULong 'calculated in TimerPulse_Tick
 Private PulsePeriod = 500 As ULong 'remains constant
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

We define the different objects and variables.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLED.Initialize(10, pinLED.MODE_OUTPUT)

 pinPot.Initialize(pinPot.A2, pinPot.MODE_INPUT)

 TimerPulsePeriod.Initialize("TimerPulsePeriod_Tick", PulsePeriod)
End Sub

We initialize the different objects.

Private Sub pinButton_StateChanged (State As Boolean)
' Log("state: ", State)
 'State will be False when the button is clicked because of the PULLUP mode.
 If State = False Then
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 StateON_OFF = Not(StateON_OFF)
 BounceTime = Millis
 TimerPulsePeriod.Enabled = StateON_OFF
' Log("Reading: ", Reading) 'Log for testing
 If StateON_OFF = False Then
 pinLED.DigitalWrite(False)
 End If
 End If
 End If
End Sub

With the pushbutton switch we enable or disable TimerPulsePeriod to switch the system ON or

OFF.

5.6 PulseWidthModulation.b4r 54 B4R Example Projects

Private Sub TimerPulsePeriod_Tick
' Log(pinPot.AnalogRead) 'Log for testing

 'calculate PulseWidth in function of the pot slider
 'Map the min max values:
 'Min: 0 pot > PulseWidth = 0
 'Max: 1023 pot > PulseWidth = PulsePeriod
 PulseWidth = MapRange(pinPot.AnalogRead, 0, 1023, 0, PulsePeriod)
 If PulseWidth = PulsePeriod Then '100% modulation
 pinLED.DigitalWrite(True) 'switch the LED ON
 Else If PulseWidth = 0 Then '0% modulation
 pinLED.DigitalWrite(False) 'switch the LED OFF
 Else
 pinLED.DigitalWrite(True) 'switch the LED ON
 CallSubPlus("EndPulse", PulseWidth, 0)
 End If
End Sub

We:

Calculate PulseWidth.

pinPot.AnalogRead can have a value between 0 and 1023.

PulseWidth can have values between 0 and PulsePeriod.

We use MapRange(pinPot.AnalogRead, 0, 1023, 0, PulsePeriod) to map the value of the

potentiometer slider to the correct value of PulseWidth.

Switch the LED ON or OFF depending on the value of PulseWidth.

Call EndPulse to switch the LED OFF after the PulseWidth time has elapsed.

Private Sub EndPulse(Tag As Byte)
 pinLED.DigitalWrite(False) 'switch the LED OFF
' Log("EndPulse") 'Log for testing
End Sub

We switch the LED OFF, pulse end.

5.7 PulsePeriodModulation.b4r 55 B4R Example Projects

5.7 PulsePeriodModulation.b4r

This project shows the principle of PulsePeriodModulation. I use this name; I didn’t find any other.

The difference between PulsePeriodModulation and PulseWidthModulation is that in

PulsePeriodModulation the pulse width is constant, and the pulse period is variable and can have a

value between pulse width and a max. pulse period value.

The value of PulseWidth can be set in the program and PulsePeriod is calculated in function of the

potentiometer slider position.

It is based on the LightDimmer project.

The project PulsePeriodModulation.b4r is available in the SourceCode folder.

PulsePeriodModulation:

PulseWidth can be defined in the code and remains constant.

PulsePeriod is variable, between PulseWidth and a max. value.

This kind of modulation can be used for DC motors with very slow motion.

I used a LED in the project to show the principle with big values for PulseWidth and PulsePeriod.

For a motor, these values must be much smaller.

PulseWidth

PulsePeriod

PulseWidth

PulsePeriod

5.7 PulsePeriodModulation.b4r 56 B4R Example Projects

5.7.1 Sketch

The circuit is the same as the LightDimmer circuit.

Material:

• 1 push button switch

• 1 LED

• 1 potentiometer

• 1 220 Ω resistor

Pushbutton, one pin connected to the GND line of

the breadboard, and the other pin connected to

analog pin 5 of the Arduino ONE.

LED cathode (-) connected to the GND line of the

breadboard via a 220 Ω resistor.

LED anode (+) connected to digital pin 10.

Potentiometer, one pin connected to the GND line

of the breadboard, the other pin connected to the

5V line of the breadboard, and the slider connected

to analog pin 2 of the Arduino ONE.

5.7 PulsePeriodModulation.b4r 57 B4R Example Projects

5.7.2 Code

We define the different objects and variables.

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton, pinPot, pinLED As Pin
 Private StateON_OFF = False As Boolean 'state ON or OFF
 Private MaxPulsePeriod = 2000 As ULong 'Max PulsePeriod value
 Private PulseWidth = 200 As ULong 'remains constant
 Private PulsePeriod As ULong 'calculated in TimerPulse_Tick
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

Program start:

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLED.Initialize(10, pinLED.MODE_OUTPUT)

 pinPot.Initialize(pinPot.A2, pinPot.MODE_INPUT)
End Sub

pinButton Routine:

Private Sub pinButton_StateChanged (State As Boolean)
' Log("state: ", State)
 'state will be False when the button is clicked because of the PULLUP mode.
 If State = False Then
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 StateON_OFF = Not(StateON_OFF)
' Log("StateON_OFF: ", StateON_OFF)
 BounceTime = Millis
 If StateON_OFF = True Then
 NextPulse(0)
 Else
 pinLED.DigitalWrite(False)
 End If
 End If
 End If
End Sub

5.7 PulsePeriodModulation.b4r 58 B4R Example Projects

We use two routines to switch the LED ON or OFF called with CallSubPlus.

With CallSubPlus, the given routine is called after the given time.
CallSubPlus (SubName , DelayMs, Tag)

Tag is the parameter in the routine.

NextPulse routine:

Private Sub NextPulse(Tag As Byte)
 If StateON_OFF = True Then
 PulsePeriod = MapRange(pinPot.AnalogRead, 0, 1023, PulseWidth, MaxPulsePeriod)
 If PulsePeriod >= MaxPulsePeriod - 1 Then
 pinLED.DigitalWrite(False)
 Else if PulsePeriod <= PulsePeriod + 1 Then
 pinLED.DigitalWrite(True)
 Else
 pinLED.DigitalWrite(True)
 CallSubPlus("EndPulse", PulseWidth, 0)
 End If
 CallSubPlus("EndPulse", PulseWidth, 0)
 CallSubPlus("NextPulse", PulsePeriod, 0)
' Log("NextPulse") 'Log for testing
 End If
End Sub

We:

Calculate PulsePeriod.

pinPot.AnalogRead can have a value between 0 and 1023.

PulsePeriod can have values between PulseWidth and MaxPulsePeriod.

We use MapRange(pinPot.AnalogRead, 0, 1023, PulseWidth, MaxPulsePeriod) to map the value

of the potentiometer slider to the correct value of PulsePeriod.

Switch the LED ON or OFF depending on the value of PulsePeriod.

Call EndPulse to switch the LED OFF after the PulseWidth time has elapsed.

Call NextPulse to generate the next pulse.

EndPulse routine:

Private Sub EndPulse(Tag As Byte)
 pinLED.DigitalWrite(False) 'switch the LED OFF
' Log("EndPulse") 'Log for testing
End Sub

We switch the LED OFF, pulse end.

EndPulse / PulseWidth

NewPulse / PulsePeriod

5.8 DCMotorSlowMotion.b4r 59 B4R Example Projects

5.8 DCMotor slow motion

This project is a combination of the DCMotorHBridge and the PulsePeriodModulation projects.

With the right pushbutton we switch the motor on or off.

With the left pushbutton we change the motion direction.

With the potentiometer we modulate the speed of the motor with very slow motion.

I had used this kind of modulation, quite some years ago, for the power supply of a railroad model.

The project DCMotorSlowMotion.b4r is available in the SourceCode folder.

5.8.1 Sketch

The circuit is exactly the same as the DCMotorHBridge project.

Material:

• 2 push button switches

• 1 DC motor TFK-280SA-22125

• 1 9V battery

• 1 potentiometer

• 1 L293D IC circuit

We connect:

Arduino GND pin to GND line of the breadboard.

Arduino 5V pin to 5V line of the breadboard.

The GND wire of the 9V battery to other GND

line of the breadboard.

The 9V wire of the 9V battery to 9V line of the

breadboard.

Both GND lines of the breadboard.

Both switches, one side to the GND line.

The other pin of the right switch, to switch ON or

OFF the motor, to analog pin A5.

The other pin of the left switch, to change the

direction of the motor, to analog pin A3.

The potentiometer, one end to the GND line, the

other end to the 5V line and the slider to analog pin

A1.

For the IC (pin 1 is the upper right one):

Pin 1 to digital 2.

Pin 2 to digital ~10.

Pin 3 to one wire of the DC motor.

Pin 4 and 5 to the GND line.

Pin 6 to the second wire of the DC motor.

Pin 7 to digital pin 3.

 Pin 16 to the 9V line.

https://www.arduino.cc/documents/datasheets/DCmotor.PDF
http://www.ti.com/lit/ds/symlink/l293.pdf

5.8 DCMotorSlowMotion.b4r 60 B4R Example Projects

5.8.2 Code

The code is almost the same as in the DCMotorHBridge project.

The difference is that we replace the timer by two routines from the PulsePeriodModulation project

NextPulse and EndPulse.

Sub Process_Globals
 Public Serial1 As Serial

 Private MotorON = False As Boolean 'motor ON or OFF, ON = True
 Private MotorDirection = False As Boolean 'motor direction
 Private MotorSpeed = 0 As UInt

 Private pinSwitchMotorONOFF, pinSwitchMotorDirection, pinMotorSpeed,
pinMotorControl1, pinMotorControl2, pinPot As Pin

 Private BounceTimeMotorON, BounceTimeMotorDirection As ULong
 Private BounceDelay = 10 As ULong

 Private MaxPulsePeriod = 500 As ULong 'Max PulsePeriod value
 Private PulseWidth = 20 As ULong 'remains constant
 Private PulsePeriod As ULong 'calculated in NextPulse

End Sub

We remove the Timer and add the three variables:

• MaxPulsePeriod the max pulse period, a value of 500 instead of 2000.

• PulseWidth pulse width, this value remains constant, a value of 20 instead of 200.

• PulsePeriod pulse period, this value is calculated in the routine according to the pot slider.

You can change the values of MaxPulsePeriod and PulseWidth to see what happens or to adapt them

to another motor.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")

 pinSwitchMotorONOFF.Initialize(pinSwitchMotorONOFF.A5,
pinSwitchMotorONOFF.MODE_INPUT_PULLUP)
 pinSwitchMotorONOFF.AddListener("pinSwitchMotorONOFF_StateChanged")
 pinSwitchMotorDirection.Initialize(pinSwitchMotorONOFF.A3,
pinSwitchMotorDirection.MODE_INPUT_PULLUP)
 pinSwitchMotorDirection.AddListener("pinSwitchMotorDirection_StateChanged")
 pinMotorControl1.Initialize(2, pinMotorControl1.MODE_OUTPUT)
 pinMotorControl2.Initialize(3, pinMotorControl1.MODE_OUTPUT)
 pinMotorSpeed.Initialize(10, pinMotorSpeed.MODE_OUTPUT)

 pinPot.Initialize(pinPot.A1, pinPot.MODE_INPUT)

 pinMotorControl1.DigitalWrite(MotorDirection)
 pinMotorControl2.DigitalWrite(Not(MotorDirection))

End Sub

Almost the same as in the DCMotorHBridge, removed the Timer initialization.

5.8 DCMotorSlowMotion.b4r 61 B4R Example Projects

Private Sub pinSwitchMotorONOFF_StateChanged (State As Boolean)
 If State = False Then
 If Millis - BounceTimeMotorON < BounceDelay Then
 Return
 Else
 MotorON = Not(MotorON)
 If MotorON = True Then
 NextPulse(0)
 Else
 pinMotorSpeed.AnalogWrite(0)
 End If
 BounceTimeMotorON = Millis
 End If
 Log("MotorON: ", MotorON)
 End If
End Sub

Almost the same as in the DCMotorHBridge, the line

 NextPulse(0) replaces TimerMotor.Enabled = MotorON.

Private Sub pinSwitchMotorDirection_StateChanged (State As Boolean)
' Log("StateON ", State)
 If State = False Then
 If Millis - BounceTimeMotorDirection < BounceDelay Then
 Return
 Else
 MotorDirection = Not(MotorDirection)
 pinMotorControl1.DigitalWrite(MotorDirection)
 pinMotorControl2.DigitalWrite(Not(MotorDirection))
 BounceTimeMotorDirection = Millis
 End If
 Log("MotorDirection: ", MotorDirection)
 End If
End Sub

Exactly the same as in the DCMotorHBridge project.

5.8 DCMotorSlowMotion.b4r 62 B4R Example Projects

Private Sub NextPulse(Tag As Byte)
 If SateON_OFF = True Then
 PulsePeriod = MapRange(pinPot.AnalogRead, 0, 1023, PulseWidth, MaxPulsePeriod)
 If PulsePeriod >= MaxPulsePeriod - 1 Then
 pinMotor.DigitalWrite(False)
 Else If PulsePeriod <= PulseWidth + 1 Then
 pinMotor.DigitalWrite(True)
 Else
 pinMotor.DigitalWrite(True)
 CallSubPlus("EndPulse", PulseWidth, 0)
 End If
 CallSubPlus("EndPulse", PulsePeriod, 0)
 CallSubPlus("NextPulse", PulsePeriod, 0)
' Log("NextPulse") 'Log for testing
 End If
End Sub

Private Sub EndPulse(Tag As Byte)
 pinMotor.DigitalWrite(False) 'switch the LED OFF
' Log("EndPulse") 'Log for testing
End Sub

These two routines are exactly the same as in the PulsePeriodModulation project.

5.9 LCDDisplay.b4r 63 B4R Example Projects

5.9 LCDDisplay.b4r

We reuse the TrafficLight project and add a LCD display to show the different states of the lights.

Make a new folder LCDDisplay, copy there all the files of the TrafficLight project and rename the

TrafficLight.xxx files to LCDDisplay.xxx.

The project LCDDisplay.b4r is available in the SourceCode folder.

For this project we need the rLiquidCrystal library.

In the Libraries Tab select the rLiquidCrystal library.

Before after.

The library and its version number appear on top of the

Library Manager.

5.9 LCDDisplay.b4r 64 B4R Example Projects

The rLiquidCrystal library has following methods:

• LCD.Initialize(RS As Byte, RW As Byte, Enable As Byte, DataPins As Byte())

RS pin index of the Arduino for the display RS (Register Select) pin.

 Arduino pin D12 in our case.

RW pin index of the Arduino for the display RW (Read / Write) pin.

 Breadboard GDN line in our case.

Enable pin index of the Arduino for the display Enable pin.

 Arduino pin D12 in our case.

DataPins pins for the data.

 pins D5, D4, D3, D2 in our case.

• LCD.Begin(NumberOfColumns As Byte, NumberOfRows As Byte)

NumberOfColumns in our case 16

NumberOfRows in our case 2

• LCD.Clear

Clears the screen and sets the cursor to (0, 0). Top left corner.

• LCD.SetCursor(Column As Byte, Row As Byte)

Sets the cursor for display at the given Column and Row.

• LCD.Write(Message As Object)

Writes a message to the LCD display.

Message can be either a:

o String

o Number

o Array of bytes.

• LCD.CursorON

LCD.CursorON = True sets an underline at the current cursor position.

• LCD.DisplayON

LCD.DisplayON = True sets the display state.

• LCD.Blink

LCD.Blink = True activates the blinking of the cursor.

5.9 LCDDisplay.b4r 65 B4R Example Projects

5.9.1 LCD display

The LCD display has 2 rows of 16 characters.

The 16 pins: in the project connected to

GND Power ground breadboard GND line

Vcc Power 5V breadboard 5 V line

Vo Contrast adjustment slider of the potentiometer 0 min to 5V max.

RS Register select Arduino D12

RW Read / Write breadboard GND (Write)

E Enable Arduino D11

DB0 Digital pin 0 not used

DB1 Digital pin 1 not used

DB2 Digital pin 2 not used

DB3 Digital pin 3 not used

DB4 Digital pin 4 Arduino D5

DB5 Digital pin 5 Arduino D4

DB6 Digital pin 6 Arduino D3

DB7 Digital pin 7 Arduino D2

LED+ Backlight power + breadboard 5 V line via a 220 Ω resistor

LED - Backlight power - breadboard GND line

5.9 LCDDisplay.b4r 66 B4R Example Projects

5.9.2 Sketch

Material:

1 pushbutton switch

1 green Led

1 yellow Led

1 red led

1 potentiometer

1 LCD display

4 220 Ω resistors

Connect the different parts like in the sketch.

5.9 LCDDisplay.b4r 67 B4R Example Projects

5.9.3 Code

We need to add the definition of the liquid crystal display.

Type Public lcdDisplay As, the auto complete function suggests you the possible objects.

Click on to confirm. The rest of the code is hopefully self-explanatory.

Sub Process_Globals
 Public Serial1 As Serial

 Public pinButton As Pin 'pin for the button
 Public pinLEDGreen, pinLEDYellow, pinLEDRed As Pin 'pins for the Leds
 Public lcdDisplay As LiquidCrystal

 Public TimerGreenRed, TimerYellow As Timer
 Public LightOn = False As Boolean
 Public LightGreen = False As Boolean
 Private BounceTime As ULong
 Private BounceDelay = 10 As ULong
End Sub

Private Sub AppStart
 Serial1.Initialize(115200)

 TimerGreenRed.Initialize("TimerGreenRed_Tick", 2000)
 TimerYellow.Initialize("TimerYellow_Tick", 500)

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLEDGreen.Initialize(7, pinLEDGreen.MODE_OUTPUT)
 pinLEDYellow.Initialize(8, pinLEDYellow.MODE_OUTPUT)
 pinLEDRed.Initialize(9, pinLEDRed.MODE_OUTPUT)

 'initialize the display(RS As Byte, RW As Byte, Enable As Byte
 'RS pin > Arduino digital pin 12
 'RW pin > 255 means mot used
 'Enable pin > Arduino digital pin 11
 'DataPins: Arduino digital pins 5, 4, 3, 2
 lcdDisplay.Initialize(12, 255, 11, Array As Byte(5, 4, 3, 2))
 lcdDisplay.Begin(16, 2) 'set the display type 2 * 16 characters
 lcdDisplay.Write("Light OFF") 'write "Light OFF" in the first line
End Sub

5.9 LCDDisplay.b4r 68 B4R Example Projects

Private Sub pinButton_StateChanged (State As Boolean)
 Log("State: ", State) 'Log the Start value
 If State = False Then 'if State = False
 If Millis - BounceTime < BounceDelay Then
 Return
 Else
 pinLEDRed.DigitalWrite(True) 'switch ON the red LED
 LightOn = Not(LightOn) 'change the value of LightOn
 Log("Light: ", LightOn) 'Log the LightOn value
 BounceTime = Millis
 lcdDisplay.Clear 'clear the display
 If LightOn = True Then
 lcdDisplay.Write("Light ON") 'write "Light ON" in the first line
 lcdDisplay.SetCursor(0, 1) 'set the cursor at the begin of second line
 lcdDisplay.Write("Red") 'write "red" in the second line
 Else 'if State = True
 lcdDisplay.Write("Light OFF") 'write "Light OFF" in the first line
 End If

 TimerGreenRed.Enabled = LightOn 'enable TimerGreenRed Timer

 If LightOn = False Then 'if LightOn = False
 pinLEDGreen.DigitalWrite(False) 'switch OFF LED Green
 pinLEDYellow.DigitalWrite(False) 'switch OFF LED Yellow
 pinLEDRed.DigitalWrite(False) 'switch OFF LED Red
 End If
 End If
 End If
End Sub

Private Sub TimerGreenRed_Tick
 If LightGreen = True Then 'if LightGreen = True
 Log("TimerGreenRed_Tick LightYellow") 'write the Log
 lcdDisplay.SetCursor(0, 1) 'position the cusor at the begin of second line
 lcdDisplay.Write("yellow")
 TimerYellow.Enabled = True
 pinLEDGreen.DigitalWrite(False) 'switch OFF LED Green
 pinLEDYellow.DigitalWrite(True) 'switch ON LED Yellow
 LightGreen = False 'set LightGreen to False
 Else 'if LightGreen = False
 Log("TimerGreenRed_Tick LightGreen")'write the Log
 lcdDisplay.SetCursor(0, 1) 'set the cursor at the begin of second line
 lcdDisplay.Write("green ") 'write "green " in the second line
 pinLEDRed.DigitalWrite(False) 'switch OFF LED Red
 pinLEDGreen.DigitalWrite(True) 'switch ON LED Green
 LightGreen = True 'set LightGreen to True
 End If
End Sub

Private Sub TimerYellow_Tick
 Log("TimerYellow_Tick LightRed") 'write the Log
 Log(" ")
 lcdDisplay.SetCursor(0, 1) 'set the cursor at the begin of second line
 lcdDisplay.Write("red ") 'write "red " in the second line
 pinLEDYellow.DigitalWrite(False) 'switch OFF LED Yellow
 pinLEDRed.DigitalWrite(True) 'switch ON LED Red
 TimerYellow.Enabled = False 'disable Timer TimerYellow
End Sub

5.10 PulseWidthMeter.b4r 69 B4R Example Projects

5.10 PulseWidthMeter

We reuse the LCDDisplay project.

Make a new folder PulseWidthMeter, copy there all the files of the LCDDisplay project and rename

the LCDDisplay.xxx files to PulseWidthMeter.xxx.

The project PulseWidthMeter.b4r is available in the SourceCode folder.

For this project we need the rLiquidCrystal library.

In the Libraries Tab select the rLiquidCrystal library.

5.10.1 Sketch

Material:

1 pushbutton switch

1 potentiometer

1 LCD display

1 220 Ω resistor

It’s the same as the LCDDisplay circuit, without

the three LEDs.

You can even leave the LEDs, they are simply

not used.

5.10 PulseWidthMeter.b4r 70 B4R Example Projects

5.10.2 Code

Sub Process_Globals
 Public Serial1 As Serial

 Public pinButton As Pin 'pin for the button
 Public lcdDisplay As LiquidCrystal

 Public TimeBegin, PulseWidth As ULong 'used to measure the time
End Sub

We leave the definition of pinButton and lcdDisplay and remove the rest.

We add two variables TimeBegin and pinButton used to measure the time.

Private Sub AppStart
 Serial1.Initialize(115200)

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 'initialize the display(RS As Byte, RW As Byte, Enable As Byte
 'RS pin > Arduino digital pin 12
 'RW pin > 255 means mot used
 'Enable pin > Arduino digital pin 11
 'DataPins: Arduino digital pins 5, 4, 3, 2
 lcdDisplay.Initialize(12, 255, 11, Array As Byte(5, 4, 3, 2))
 lcdDisplay.Begin(16, 2) 'set the display type 2 * 16 characters
 lcdDisplay.Write("Pulse width [ms]") 'write "Pulse width" in the first line
End Sub

Nothing new.

Private Sub pinButton_StateChanged (State As Boolean)
' Log("State: ", State) 'Log the State value
 If State = False Then 'if State = False, button down
 TimeBegin = Millis
 Else
 'calculate the numer of milliseconds since button down
 PulseWidth = Millis - TimeBegin
 lcdDisplay.SetCursor(0, 1) 'set the cursor at the begin of the second line
 lcdDisplay.Write(" ") 'clear the text
 lcdDisplay.SetCursor(0, 1) 'set the cursor at the begin of the second line
 lcdDisplay.Write(PulseWidth) 'write the nubmer of milli seconds
 End If
End Sub

When we press the button, we measure the time since the last restart.

When we release the button, we measure the number of milli seconds since button down and

display the value on the display.

5.11 ObjectArrays.b4r 71 B4R Example Projects

5.11 ObjectArrays.b4r

This project shows how to use object arrays.

The circuit has 4 LEDs which are switched ON and OFF with a timer.

The LEDs can be switched ON or OFF with the right pushbutton switch.

Two display modes selected with left pushbutton switch:

• All LEDs are OFF, only the current LED is ON.

• All LEDs are ON, only the current LED is OFF.

We use two arrays of pins to manage the two pushbuttons and the four LEDs.

The project ObjectArrays.b4r is available in the SourceCode folder.

5.11.1 Sketch

The circuit is based on the TrafficLight

circuit.

We add another pushbutton switch and

a blue LED with its resistor.

Material:

2 pushbutton switches

1 green Led

1 yellow Led

1 red led

1 blue led

4 220 Ω resistors

The right pushbutton switch has one

pin connected to GND and the other

pin connected to the analog pin A5.

The left pushbutton switch has one pin

connected to GND and the other pin

connected to the analog pin A4.

The 4 LEDs have their cathodes (-)

connected to GND via a 220 Ω resistor

The LED anodes (+) are connected:

Green to digital pin 7.

Yellow to digital pin 8.

Red to digital pin 9.

Blue to digital pin 10.

5.11 ObjectArrays.b4r 72 B4R Example Projects

5.11.2 Code

Sub Process_Globals
 Public Serial1 As Serial

 Public NbLEDs = 4 As Int 'Number of Leds
 Public pinLEDs(4) As Pin 'Pins for the Leds
 Public NbButtons = 2 As Int 'Number of buttons
 Public pinButtons(2) As Pin 'Pins for the buttons

 Public TimerLEDs As Timer
 Public LightON = False As Boolean 'lights ON or OFF, ON = True
 Public LEDIndex = 0 As Int 'index of current LED
 Public AllLedsON = False As Boolean 'lighting type
 Private BounceTime(2) As ULong
 Private BounceDelay = 10 As ULong
End Sub

We declare the objects and variables.

Instead of declaring 4 individual pins for the LEDs like:
Public pinLEDGreen, pinLEDYellow, pinLEDRed, pinLEDBlue As Pin

We declare an array of 4 pins.
Public pinLEDs(4) As Pin

The same for the 2 pushbutton switches.

We use LightON to switch all the LEDs ON or OFF.

We use LEDIndex for the current LED to switch it ON or OFF depending on the

lighting type AllLedsON.

We use AllLedsON for the lighting type.

• AllLedsON = False All LEDs switched OFF only the current LED is switched ON.

• AllLedsON = True All LEDs switched ON only the current LED is switched OFF.

In B4R this code doesn’t work:
 Public NbLEDs = 4 As Int 'Number of Leds
 Public pinLEDs(NbLEDs) As Pin 'Pins for the Leds

In Public pinLEDs(4) As Pin the value must be a numeric literal, not a variable.

Public pinLEDs(NbLEDs) As Pin throws this error:

5.11 ObjectArrays.b4r 73 B4R Example Projects

Private Sub AppStart
 Private i As Int

 Serial1.Initialize(115200)

 TimerLEDs.Initialize("TimerLEDs_Tick", 500)

 'Initialize the buttons and add the StateChange event
 'Analog pins A4, A5
 'Analog pins A0 = 14, A1 = 15, A2 = 16, A3 = 17, A4 = 18, A5 = 19
 'in our case (i + 18), 18 and 19, therefore A4 and A5
 For i = 0 To NbButtons – 1
 'Using the internal pull up resistor to prevent the pin from floating.
 pinButtons(i).Initialize(i + 18, pinButtons(i).MODE_INPUT_PULLUP)
 pinButtons(i).AddListener("pinButtons_StateChanged")
 Next

 'Initialize the LEDs
 'Digital pins 7, 8, 9, 10
 For i = 0 To NbLEDs - 1
 pinLEDs(i).Initialize(i + 7, pinLEDs(i).MODE_OUTPUT)
 Next
End Sub

Instead of initializing the pushbutton switches like:
 pinButton1.Initialize(pinButton1.A4, pinButton1.MODE_INPUT_PULLUP)
 pinButton1.AddListener("pinButtons_StateChanged")
 pinButton2.Initialize(pinButton2.A5, pinButtons2.MODE_INPUT_PULLUP)
 pinButton2.AddListener("pinButtons_StateChanged")

We use a For / Next loop:
 For i = 0 To NbButtons – 1
 'Using the internal pull up resistor to prevent the pin from floating.
 pinButtons(i).Initialize(i + 18, pinButtons(i).MODE_INPUT_PULLUP)
 pinButtons(i).AddListener("pinButtons_StateChanged")
 Next

The analog pins can be addressed either with:

pin.A0 or 18, pin.A1 or 19, pin.A2 or 20 etc.

The same for the LEDs, instead of:
 pinLEDGreen.Initialize(7, pinLEDGreen.MODE_OUTPUT)
 pinLEDYellow.Initialize(8, pinLEDYellow.MODE_OUTPUT)
 pinLEDRed.Initialize(9, pinLEDRed.MODE_OUTPUT)
 pinLEDBlue.Initialize(10, pinLEDBlue.MODE_OUTPUT)

We use also a For / Next loop:
 For i = 0 To NbLEDs - 1
 pinLEDs(i).Initialize(i + 7, pinLEDs(i).MODE_OUTPUT)
 Next

5.11 ObjectArrays.b4r 74 B4R Example Projects

Private Sub pinButtons_StateChanged (State As Boolean)
 Private p As Pin

 Log("State: ", State) 'Log the State value

 p = Sender 'get the Pin which raised the event
 Log("Pin Number: ", p.PinNumber) 'Log the Pin Number

 Select p.PinNumber
 Case 18 'Light type
 If State = False Then 'if State = False, button down
 If Millis – BounceTime(0) < BounceDelay Then
 Return
 Else
 AllLedsON = Not(AllLedsON) 'change the state of AllLedsON
 BounceTime(0) = Millis
 If LightON = True Then 'if LightOn = False
 For i = 0 To NbLEDs - 1
 'switch OFF or ON all LEDs depending on AllLedsON
 pinLEDs(i).DigitalWrite(AllLedsON)
 Next
 'switch ON or OFF the current LED depending on AllLedsON
 pinLEDs(LEDIndex).DigitalWrite(Not(AllLedsON))
 End If
 End If
 End If
 Case 19 'Lights ON / OFF
 If State = False Then 'if State = False, button down
 If Millis – BounceTime(1) < BounceDelay Then
 Return
 Else
 LightON = Not(LightON) 'change the value of LightON
 Log("Light: ", LightON) 'Log the LightOn value
 BounceTime(1) = Millis

 TimerLEDs.Enabled = LightON 'enable or disable TimerLEDs Timer

 If LightON = False Then 'if LightOn = False, lights OFF
 For i = 0 To NbLEDs - 1
 pinLEDs(i).DigitalWrite(False) 'switch OFF all LEDs
 Next
 Else
 For i = 0 To NbLEDs - 1
 pinLEDs(i).DigitalWrite(AllLedsON) 'switch OFF or ON all LEDs
 Next
 'switch ON or OFF the current LED
 pinLEDs(LEDIndex).DigitalWrite(Not(AllLedsON))
 End If
 End If
 End If
 End Select
End Sub

5.11 ObjectArrays.b4r 75 B4R Example Projects

We have only one StateChanged event routine therefore we need to know which pushbutton switch

raised the event.

We use, like in the other B4x languages, the Sender object.
 Private p As Pin
 p = Sender

In the other B4x languages we can use the Tag property of the object to know which one raised the

event. In B4R the Tag property doesn’t exist.

We use the PinNumber property.
 Select p.PinNumber

And Case 18 for the lighting type pushbutton switch.

And Case 19 for the light ON/OFF pushbutton switch.

5.11 ObjectArrays.b4r 76 B4R Example Projects

Using an array for the LEDs and variables for the lighting type and the current active LED is a big

advantage because the code becomes much shorter, but a bit more difficult to read.

 If LightON = True Then 'if LightOn = False
 For i = 0 To NbLEDs - 1
 'switch OFF or ON all LEDs depending on AllLedsON
 pinLEDs(i).DigitalWrite(AllLedsON)
 Next
 'switch ON or OFF the current LED depending on AllLedsON
 pinLEDs(LEDIndex).DigitalWrite(Not(AllLedsON))
 End If

The code above is much simpler than the code below we should have written without the arrays:
 If LightON = True Then
 If AllLedsON = False Then
 'switch OFF all LEDs
 pinLedGreen.DigitalWrite(False)
 pinLedYellow.DigitalWrite(False)
 pinLedRed.DigitalWrite(False)
 pinLedBlue.DigitalWrite(False)
 Select LEDIndex)
 Case 0
 pinLedGreen.DigitalWrite(True)
 Case 1
 pinLedYellow.DigitalWrite(True)
 Case 2
 pinLedRed.DigitalWrite(True)
 Case 3
 pinLedBlue.DigitalWrite(True)
 End Select
 Else
 'switch ON all LEDs
 pinLedGreen.DigitalWrite(True)
 pinLedYellow.DigitalWrite(True)
 pinLedRed.DigitalWrite(True)
 pinLedBlue.DigitalWrite(True)
 Select LEDIndex)
 Case 0
 pinLedGreen.DigitalWrite(False)
 Case 1
 pinLedYellow.DigitalWrite(False)
 Case 2
 pinLedRed.DigitalWrite(False)
 Case 3
 pinLedBlue.DigitalWrite(False)
 End Select
 End If
 End If

Private Sub TimerLEDs_Tick
 pinLEDs(LEDIndex).DigitalWrite(AllLedsON) 'switch OFF or ON the current LED
 'increment LedIndex by 1 and set it to 0 if LEDIndex = NbLEDs
 LEDIndex = (LEDIndex + 1) Mod NbLEDs
 pinLEDs(LEDIndex).DigitalWrite(Not(AllLedsON)) 'switch ON or OFF the current LED
End Sub

This code is also quite simple.

6 HC-05 Bluetooth 77 B4R Example Projects

6 HC-05 Bluetooth

The HC-05 module allows Bluetooth communication between an Arduino or similar boards and any

other device.

Attention: The HC-05 module works with 3.3V and not with 5V!

Pins:

• STATE Shows the state of the HC-05, the STATE pin is LOW when the HC-05 is not

 connected and HIGH when the HC-05 is connected.

• RXD Serial communication RX.

• TXD Serial communication TX.

• GND Power supply ground.

• VCC Power supply 3.6 to 6V.

• EN Used to program the HC-05, we don’t use it.

All the example programs using the HC-05 Bluetooth module use a same class for the

communication between the Arduino and the smartphone.

6.1 HC-05 LedOnOff 78 B4R Example Projects

6.1 Program HC05LedOnOff.b4r

With this first program we use an Android device to switch ON and OFF a LED via a HC-05 board

and an Arduino UNO.

The project HC05LedOnOff is available in the SourceCode\HC05 folder.

It is based on Erels project in the forum, a little bit modified.

The project includes the B4R program managing the Arduino UNO and the HC-05 board.

And a B4A program to communicate between an Android device and the Arduino.

Display of the status.

Button to connect the two devices.

A Togglebutton to switch the LED ON or OFF.

Message returned from the Arduino.

The Arduino UNO sends every second a message with

the milliseconds elapsed since its connection.

When we click on the first time we are

asked if we want to pair the two devices.

Enter “1234” for the PIN code.

Then the Android device tries to connect.

When the connection is established, the Status changes,

the Connect button is disabled and the Togglebutton is

enabled.

And we get messages from the Arduino.

The Arduino UNO sends every second a message with

the milliseconds elapsed since its connection.

https://www.b4x.com/android/forum/threads/hc-05-classic-bluetooth.66677/#content

6.1 HC-05 LedOnOff 79 B4R Example Projects

6.1.1 Sketch

We use:

• 1 Arduino UNO

• 1 HC-05 board

• 1 yellow LED

• 1 red LED, shows the HC-05 state

• 3 1k Ω resistors for the voltage divider

• 2 220 Ω resistors for the LEDs

We connect_

• The GND pin of the UNO to the GND

line of the breadboard.

• The 5V pin of the UNO to the VIN pin

of the HC-05.

• The GND pin of the HC-05 to the GND

line of the breadboard.

• Pin D11 of the UNO to the TXD pin of

the HC-05.

• Pin D12 of the UNO to the RXD pin of

the HC-05 via the voltage divider.

• Pin D9 of the UNO to the anode of the

yellow LED.

• One 220 Ω resistor between the cathode

of the yellow LED and the GND line of

the breadboard.

• The anode of the red LED to the STATE

pin of the HC-05.

• One 220 Ω resistor between the cathode

of the red LED and the GND line of the

breadboard.

Because of the different voltage levels between the Arduino UNO (5V) and the HC-05 (3.3V) we

need to adapt signal levels.

The power supply for the HC-0 accepts values between 3.6 and 6V, so we provide it from the

Arduino 5V pin.

The TXD pin of the HC-05 can be directly connected to the RX wire, pin D11 of the Arduino in our

case. The 3.3V level is sufficient to drive an Arduino digital pin.

To connect the TX wire of the Arduino (pin D12 in our case) we need a voltage divider to convert

the 5V down to 3.3V.

The voltage divider:

We use three 1k Ω resistors.

We could also have used

one 1k Ω resistor and

one 2k Ω resistor.

But I did not have a 2k Ω resistor.

So, I use two 1k Ω resistors in series.

1k Ω

1k Ω

1k Ω

5 V

3.3 V

GND

6.1 HC-05 LedOnOff 80 B4R Example Projects

6.1.2 Code

We need two programs, one for the Arduino UNO and one for the Android device.

6.1.2.1 B4R Arduino UNO

We need two libraries:

• rRandomAccessFile

• rSoftwareSerial

Sub Process_Globals
 Public Serial1 As Serial
 Private SoftwareSerial1 As SoftwareSerial
 Private astream As AsyncStreams
 Private YellowLED As Pin
 Private Timer1 As Timer

End Sub

We declare the different variables.

We initialize:

• The yellow LED as digital pin D5

• The software serial interface with the digital pin D11 for the RX signal and the digital pin

D12 for the TX signal. We use a software serial interface because the ‘standard’ RX and TX

lines are used for the communication between B4R and the Arduino UNO.

• The AsynchStream to send the messages.

• The Timer for the message timing.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 YellowLED.Initialize(5, YellowLED.MODE_OUTPUT)
 SoftwareSerial1.Initialize(9600, 11, 12) 'software serial port on pins 12 and 11
 astream.Initialize(SoftwareSerial1.Stream, "astream_NewData", Null)
 Timer1.Initialize("timer1_Tick", 1000)
 Timer1.Enabled = True
End Sub

In every tick we send the message “Millis here:” plus the milliseconds elapsed since the connection

of the Arduino.

Sub Timer1_Tick
 astream.Write("Millis here: ".GetBytes)
 astream.Write(NumberFormat(Millis, 0, 0).GetBytes)
 astream.Write(Array As Byte(10)) 'end of line character. AsyncStreamsText will cut
the message here
End Sub

We get the message from the Android device and set the value to the yellow LED.

Sub AStream_NewData (Buffer() As Byte)
 Dim value As Boolean = Buffer(0) = 1
 YellowLED.DigitalWrite(value)
End Sub

6.1 HC-05 LedOnOff 81 B4R Example Projects

6.1.2.2 B4A Android

Needs two libraries:

• RandomAccessFile

• Serial

And one Class:

• AsyncStreamsText

All the communication is managed in the Starter service module.

Sub Globals
 Private tbtLED As ToggleButton
 Private lblStatus As Label
 Private btnConnect As Button
 Private lblMessage As Label
 Private ProgressBar1 As ProgressBar

 Private Status As String
End Sub

We use:

• A ToggleButton to swirch ON or OFF the LED.

• A Label diplaying the connecting status.

• A Button to connect the device to the Arduino.

• A Label to display the message sent by the Arduino.

• A ProgressBar, shown during the connection.

• A String variable, containing the connecting status.

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("Main")
End Sub

We load the layout.

Sub Activity_Resume
 SetState
End Sub

We set the connecting state.

Sub Activity_Pause (UserClosed As Boolean)
 If UserClosed = True And Status = "connected" Then
 CallSub2(Starter, "SendMessage", Array As Byte(0))
 End If
End Sub

We switch off the LED when the user leaves the program.

6.1 HC-05 LedOnOff 82 B4R Example Projects

Public Sub SetState
 tbtLED.Enabled = Starter.connected
 btnConnect.Enabled = Not(Starter.connected)
 ProgressBar1.Visible = Starter.connecting
 If Starter.Connected Then
 Status = "connected"
 Else If Starter.TryToConnect Then
 Status = "trying to connect..."
 Else If Starter.Connecting Then
 Status = "HC-05 found connecting..."
 Else
 Status = "disconnected"
 End If
 lblStatus.Text = $"Status: ${Status}"$
End Sub

We display the connecting status text in lblStatus.

Public Sub MessageFromDevice(msg As String)
 lblMessage.Text = msg
End Sub

We display the message set by the Arduino.

Sub tbtLED_CheckedChange(Checked As Boolean)
 Dim b As Byte
 If Checked = True Then
 b = 1
 Else
 b = 0
 End If
 CallSub2(Starter, "SendMessage", Array As Byte(b))
End Sub

Depending on the state of the ToggleButton we send either 1 (True) or 0 (False) to the Ardiono.

Sub btnConnect_Click
 CallSub(Starter, "Connect")
End Sub

When the Button btnConnect is clicked we start the connection with the Arduino.

6.2 HC-05 LightDimmer 83 B4R Example Projects

6.2 Program HC05LightDimmer

This project is almost the same as the HC05LedOnOff, the difference is that we can modulate the

light intensity with a Seekbar on the Android device.

The project HC05LightDimmer is available in the SourceCode\HC05 folder.

Display of the status.

Button to connect the two devices.

A Togglebutton to switch the LED ON or OFF.

Slider to control the LED brightness.

Message returned from the Arduino.

The Arduino UNO sends every second a message with

the milliseconds elapsed since its connection.

6.2 HC-05 LightDimmer 84 B4R Example Projects

6.2.1 Sketch

Same as the HC05LedOnOff program.

We use:

• 1 Arduino UNO

• 1 HC-05 board

• 1 yellow LED

• 1 red LED, shows the HC-05 state

• 3 1k Ω resistors for the voltage divider

• 2 220 Ω resistors for the LEDs

We connect_

• The GND pin of the UNO the GND line

of the breadboard.

• The 5V pin of the UNO to the VIN pin

of the HC-05.

• The GND pin of the HC-05 to the GND

line of the breadboard.

• Pin D11 of the UNO to the TXD pin of

the HC-05.

• Pin D12 of the UNO to the RXD pin of

the HC-05 via the voltage divider.

• Pin D9 of the UNO to the anode of the

yellow LED.

• One 220 Ω resistor between the cathode

of the yellow LED and the GND line of

the breadboard.

• The anode of the red LED to the STATE

pin of the HC-05.

• One 220 Ω resistor between the cathode

of the red LED and the GND line of the

breadboard.

Because of the different voltage levels between the Arduino UNO (5V) and the HC-05 (3.3V) we

need to adapt signal levels.

The power supply for the HC-05 accepts values between 3.6 and 6V, so we provide it from the

Arduino 5V pin.

The TXD pin of the HC-05 can be directly connected to the RX wire, pin D11 of the Arduino in our

case. The 3.3V level is sufficient to drive an Arduino digital pin.

To connect the TX wire of the Arduino (pin D12 in our case) we need a voltage divider to convert

the 5V down to 3.3V.

6.2 HC-05 LightDimmer 85 B4R Example Projects

6.2.2 Code

6.2.2.1 B4R Arduino

We need two libraries:

• rRandomAccessFile

• rSoftwareSerial

This project is almost the same as the HC05LedOnOff program, only the differences is shown

below.

HC05LightDimmer HC05LedOnOff

Sub AStream_NewData (Buffer() As Byte) Sub AStream_NewData (Buffer() As Byte)
 Dim value As UInt = Buffer(0) Dim value As Boolean = Buffer(0) = 1
 YellowLED.AnalogWrite(value) YellowLED.DigitalWrite(value)
End Sub End Sub

In these routines we get the data sent by the connected device.

In HC05LightDimmer we get an integer In HC05LedOnOff we get a Boolean

value converted into a byte. value converted into a byte.

6.2.2.2 B4A Android

The B4A project is almost the same, here too, only the differences are shown below.

HC05LightDimmer HC05LedOnOff

Sub Globals Sub Globals
 Private tbtLED As ToggleButton Private tbtLED As ToggleButton
 Private lblStatus As Label Private lblStatus As Label
 Private btnConnect As Button Private btnConnect As Button
 Private lblMessage As Label Private lblMessage As Label
 Private ProgressBar1 As ProgressBar Private ProgressBar1 As ProgressBar
 Private skbDimmer As SeekBar
 Private lblDimmer As Label

 Private Status As String Private Status As String
End Sub End Sub

Just two new objects, a Seekbar skbDimmer and a Label lblDimmer.

And a new routine for the Seekbar:
Sub skbDimmer_ValueChanged (Value As Int, UserChanged As Boolean)
 lblDimmer.Text = Value
 If tbtLED.Checked = True Then
 Dim b As Byte
 b = Value
 CallSub2(Starter, "SendMessage", Array As Byte(b))
 End If
End Sub

6.3 HC-05 DataLogger 86 B4R Example Projects

6.3 Program HC05DataLogger.b4r

With this program we use an Android device to get data from an Arduino UNO via a HC-05 board.

The data on the Arduino is generated with a potentiometer.

The project HC05DataLogger is available in the SourceCode\HC05 folder.

It is based on Erels project in the forum, a little bit modified.

The project includes the B4R program managing the Arduino UNO and the HC-05 board.

And a B4A program to communicate between the Android device and the Arduino.

Display of the status.

Button to connect the two devices.

A Togglebutton to switch ON or OFF the data stream.

Display of the last data.

Display of the transmitted data.

The Arduino UNO sends every 100ms the value of the

potentiometer.

https://www.b4x.com/android/forum/threads/hc-05-classic-bluetooth.66677/#content

6.3 HC-05 DataLogger 87 B4R Example Projects

6.3.1 Sketch

We use:

• 1 Arduino UNO

• 1 HC-05 board

• 1 yellow LED

• 1 red LED, shows the HC-05

state

• 3 1k Ω resistors for the voltage

divider

• 2 220 Ω resistors for the LEDs

We connect_

• The GND pin of the UNO the

GND of the breadboard.

• The 5V pin of the UNO to the

VIN pin of the HC-05.

• The GND pin of the HC-05 to the

GND line of the breadboard.

• Pin D11 of the UNO to the TXD

pin of the HC-05.

• Pin D12 of the UNO to the RXD

pin of the HC-05 via the voltage divider.

• Pin D9 of the UNO to the anode

of the yellow LED.

• One 220 Ω resistor between the

cathode of the yellow LED and the GND

line of the breadboard.

• The anode of the red LED to the

STATE pin of the HC-05.

• One 220 Ω resistor between the

cathode of the red LED and the GND line

of the breadboard.

• One potentiometer connected to

GND and 5V, the slider is connected to pin A1.

Because of the different voltage levels between the Arduino UNO (5V) and the HC-05 (3.3V) we

need to adapt signal levels.

The power supply for the HC-0 accepts values between 3.6 and 6V, so we provide it from the

Arduino 5V pin.

The TXD pin of the HC-05 can be directly connected to the RX wire, pin D11 of the Arduino in our

case. The 3.3V level is sufficient to drive an Arduino digital pin.

To connect the TX wire of the Arduino (pin D12 in our case) we need a voltage divider to convert

the 5V down to 3.3V.

6.3 HC-05 DataLogger 88 B4R Example Projects

6.3.2 Code

6.3.2.1 B4R Arduino

Sub Process_Globals
 Public Serial1 As Serial
 Private SoftwareSerial1 As SoftwareSerial
 Private astream As AsyncStreams
 Private Timer1 As Timer
 Private pinData, pinLED As Pin
 Private Send As Boolean
End Sub

We use:

• 1 Timer, to send periodically the position of the potentiometer slider.

• 2 pins

o 1 analog pin, pinData, for the potentiometrer slider.

o 1digital pin, showing the Send state.

• 1 variable, Send, data stream enabled or disabled, state of the Togglebutton in B4A.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 SoftwareSerial1.Initialize(9600, 11, 12) 'software serial port on pins 12 and 11
 astream.Initialize(SoftwareSerial1.Stream, "astream_NewData", Null)
 pinData.Initialize(pinData.A1, pinData.MODE_INPUT)
 pinLED.Initialize(5, pinLED.MODE_OUTPUT)
 Timer1.Initialize("Timer1_Tick", 100)
End Sub

We initialize:

• The serial port, like in the other HC-05 programs.

• The two pins.

• The Timer, with a period of 100ms.

Private Sub Timer1_Tick
 'sends the message, values from analog pinData, analog pin A1
 astream.Write(NumberFormat(pinData.AnalogRead, 0, 0).GetBytes)
 astream.Write(Array As Byte(10))
 'end of line character. AsyncStreamsText will cut the message here
End Sub

The Timer sends every 100ms the value of the potentiometer slider.

We need to convert the analog pin Byte value to a String.

We send a LF character which acts as an end of message character.

Private Sub AStream_NewData (Buffer() As Byte)
 'gets the Bluetooth data
 Send = Buffer(0) = 1 'data received, one byte, boolean value
 pinLED.DigitalWrite(Send) 'sets the LED
 Timer1.Enabled = Send 'enables or disables the Timer
End Sub

Gets the data from the connected device, state of ToggleButton in our case.

6.3 HC-05 DataLogger 89 B4R Example Projects

6.3.2.2 B4A Android

All the communication is managed in the Starter service module.

Variable declaration:

Sub Globals
 Private tbtLED As ToggleButton
 Private lblStatus As Label
 Private btnConnect As Button
 Private lblMessage As Label
 Private ProgressBar1 As ProgressBar
 Private pnlDisplay As Panel
 Private cvsDisplay As Canvas
 Private Value As Double
 Private Counter = 0 As Int
 Private XStep = 2dip As Int
 Private Scale As Double
 Private x0, y0, x1, y1 As Int
 Private rectDisplay, rectVal As Rect
End Sub

Initialize the canvas and drawing:

Sub Activity_Create(FirstTime As Boolean)
 Activity.LoadLayout("Main")

 cvsDisplay.Initialize(pnlDisplay)
 rectDisplay.Initialize(0, 0, pnlDisplay.Width, pnlDisplay.Height)
 DrawInit 'initializes the drawing
End Sub

Stops sending data from the Arduino when the program is left:

Sub Activity_Pause (UserClosed As Boolean)
 If UserClosed = True And lblStatus.Text = "connected" Then
 CallSub2(Starter, "SendMessage", Array As Byte(0))
 End If
End Sub

Connection state displays routine, also called from the Starter service depending on the state.

Public Sub SetState
 tbtLED.Enabled = Starter.connected
 btnConnect.Enabled = Not(Starter.connected)
 ProgressBar1.Visible = Starter.connecting
 Dim status As String
 If Starter.Connected Then
 status = "connected"
 Else If Starter.TryToConnect Then
 status = "trying to connect..."
 Else If Starter.Connecting Then
 status = "HC-05 found connecting..."
 Else
 status = "disconnected"
 End If
 lblStatus.Text = $"Status: ${status}"$
End Sub

6.3 HC-05 DataLogger 90 B4R Example Projects

Reading the massages from the Arduino and display of the value.

This routine is called from the Starter service when a new data is sent from the Arduino.

Public Sub MessageFromDevice(msg As String)
 Private Val As Double
 Val = msg
 Value = 5 * Val / 1024
 lblMessage.Text = NumberFormat(Value, 0, 2)

 DrawValue
End Sub

Sends a message to the Arduino to start or stop sending data when pressing the tbtLED

ToggleButton.

Sub tbtLED_CheckedChange(Checked As Boolean)
 Dim b As Byte
 If Checked = True Then
 b = 1
 Else
 b = 0
 lblMessage.Text = "No data"
 End If
 CallSub2(Starter, "SendMessage", Array As Byte(b))
End Sub

Draws a new value to the diagram.

Private Sub DrawValue
 Counter = Counter + XStep
 x1 = Counter
 y1 = pnlDisplay.Height - Value * Scale
 rectVal.Initialize(x0, 0, x1, pnlDisplay.Height)
 cvsDisplay.DrawLine(x0, y0, x1, y1, Colors.Red, 1dip)
 pnlDisplay.Invalidate2(rectVal)
 x0 =x1
 y0 = y1
 'clears the diagram when filled
 If Counter >= pnlDisplay.Width Then
 x0 = 0
 Counter = 0
 cvsDisplay.DrawRect(rectDisplay, Colors.White, True, 1)
 pnlDisplay.Invalidate
 End If
End Sub

6.4 HC-05 DCMotor 91 B4R Example Projects

6.4 Program HC-05 DCMotor

With this program we use an Android device to control a DC motor.

This project is like the DCMotorHBridge project, the difference is that we use an Android device to

control the motor instead of two pushbuttons and a potentiometer.

The project includes the B4R program managing the Arduino UNO and the HC-05 board.

And a B4A program to communicate between the Android device and the Arduino.

The two programs HC05DCMotor.b4r and HC05DCMotor.b4a are available in the SourceCode

folder.

We have a button to connect the HC-05 board.

One Togglebutton to switch ON or OFF the motor.

Another Togglebutton to change the rotation direction.

A Slider to adjust the motor speed.

We use a specialized H-bridge integrated circuit to

supply the power to the DC motor, a L293D circuit.

This circuit allows to change the motion direction of

the motor.

This circuit needs two power supplies, one 5V supply

for its internal logic circuits, pin 16, and a power

supply for the motor (5 to 36V), a 9V battery in our

example (pin 8).

Pins 4 and 5 are the GND pins, the two grounds (5V

and 9V must be at the same level).

Pin 1 is used to manage the motor speed, a PWM

signal.

Pin 2 and pin 7 are used to change the motion

direction.

Pin 2 LOW and pin 7 HIGH one direction.

Pin 2 HIGH and pin 7 LOW the opposite direction.

Both pins LOW or both HIGH, the motor stops.

Pin 3 and pin 6 provide the power for the motor.

https://en.wikipedia.org/wiki/H_bridge
http://www.ti.com/lit/ds/symlink/l293.pdf

6.4 HC-05 DCMotor 92 B4R Example Projects

6.4.1 Sketch

This project is a combination of an HC-05

Bluetooth module and a DC motor.

The HC-05 sketch is the same as for the

other HC-05 projects.

The DC motor sketch is almost the same as

for the DCMotorHBridge project.

Material:

• 1 Arduino UNO

• 1 HC-05 board

• 1 red LED, shows the HC-05 state.

• 3 1k Ω resistors for the voltage divider.

• 1 220 Ω resistors for the LED.

• 1 DC motor TFK-280SA-22125.

• 1 9V battery.

• 1 IC L293D circuit.

https://www.arduino.cc/documents/datasheets/DCmotor.PDF
http://www.ti.com/lit/ds/symlink/l293.pdf

6.4 HC-05 DCMotor 93 B4R Example Projects

6.4.2 Code

6.4.2.1 B4R Arduino

We declare all the components.

Sub Process_Globals
 Public Serial1 As Serial
 Private SoftwareSerial1 As SoftwareSerial
 Private astream As AsyncStreams
 Private MotorDirection1, MotorDirection2, MotorSpeed As Pin
 Private Speed As UInt
End Sub

We initialize the pins and the serial communication.

Private Sub AppStart
 Serial1.Initialize(115200)
 Log("AppStart")
 MotorDirection1.Initialize(4, MotorDirection1.MODE_OUTPUT)
 MotorDirection2.Initialize(5, MotorDirection2.MODE_OUTPUT)
 MotorSpeed.Initialize(3, MotorSpeed.MODE_OUTPUT)
 SoftwareSerial1.Initialize(9600, 11, 12) 'software serial port on pins 12 and 11
 astream.Initialize(SoftwareSerial1.Stream, "astream_NewData", Null)
End Sub

We use two bytes for the communication.

• The first byte is the message index.

• The second byte is the value to transmit.

Sub AStream_NewData (Buffer() As Byte)
 Select Buffer(0)
 Case 0 'motor On / Off
 If Buffer(1) = 0 Then
 MotorSpeed.DigitalWrite(False)
 Log("Motor OFF")
 Else
 MotorSpeed.DigitalWrite(True)
 Log("Motor ON")
 End If
 Case 1 'motor direction
 If Buffer(1) = 0 Then
 MotorDirection1.DigitalWrite(True)
 MotorDirection2.DigitalWrite(False)
 Log("Direction >>>")
 Else
 MotorDirection1.DigitalWrite(False)
 MotorDirection2.DigitalWrite(True)
 Log("Direction <<<")
 End If
 Case 2 'motor speed
 Speed = Buffer(1)
 MotorSpeed.AnalogWrite(Speed)
 Log("Speed: ", Speed)
 End Select
End Sub

6.4 HC-05 DCMotor 94 B4R Example Projects

6.4.2.2 B4A Android

Only the specific code for the motor control is explained.

The messages sent to the Arduino are arrays of two bytes.

• First byte = message index.

• Second byte = value.

We add, in Sub Globals, three variables for the message indexes for a better understanding.

Sub Globals
 Private MsgMotorOnOff = 0 As Byte
 Private MsgMotorDirection = 1 As Byte
 Private MsgMotorSpeed = 2 As Byte

When the MotorOnOff Togglebutton is pressed, we send the message.

Byte(0) = 0, MotorOnOff message.

Byte(1) = 0 or 1, False or True.

Private Sub tgbMotorOnOff_CheckedChange(Checked As Boolean)
 Dim b As Byte
 If Checked = True Then
 b = 1
 Else
 b = 0
 End If
 CallSub2(Starter, "SendMessage", Array As Byte(MsgMotorOnOff, b))
End Sub

When the MotorDirction Togglebutton is pressed, we send the message.

Byte(0) = 1, MotorDirection message.

Byte(1) = 0 or 1, False or True.

Private Sub tgbMotorDirection_CheckedChange(Checked As Boolean)
 Dim b As Byte
 If Checked = True Then
 b = 1
 Else
 b = 0
 End If
 CallSub2(Starter, "SendMessage", Array As Byte(MsgMotorDirection, b))
End Sub

When the MotorSpinner is moved, we send the message.

Byte(0) = 0, MotorSpeed message.

Byte(1) = speed value, between 0 and 255.

Sub skbMotorSpeed_ValueChanged (Value As Int, UserChanged As Boolean)
 lblMotorSpeed.Text = Value
 Dim b As Byte
 b = Value
 CallSub2(Starter, "SendMessage", Array As Byte(MsgMotorSpeed ,b))
End Sub

7 HC-SR04 Ultrasonic Range Sensor 95 B4R Example Projects

7 HC-SR04 Ultrasonic Range Sensor

The HC-SR04 is an Ultrasonic Range Sensor. It uses non-contact ultrasound sonar to measure the

distance to an object – they are great for any obstacle avoiding systems on robots or rovers!

The HC-SR04 consists of an ultrasonic transmitter, an ultrasonic receiver, and a control circuit.

It offers excellent non-contact range detection from 2cm to 400 cm or 1” to 13 feet. Its operation is

not affected by sunlight or black material like Sharp rangefinders are (although acoustically soft

materials like cloth can be difficult to detect).

Ultrasonic Distance Measurement Principles.

The transmitter emits 8 bursts of a directional 40KHz ultrasonic wave when triggered and starts a

timer. Ultrasonic pulses travel outward until they encounter an object. The object causes the wave

to be reflected back towards the unit. The ultrasonic receiver would detect the reflected wave and

stop the timer. The velocity of the ultrasonic burst is 340m/sec. in air. Based on the number of

counts by the timer, the distance can be calculated between the object and transmitter. The TRD

Measurement formula is expressed as: D = C X T which is known as the time/rate/distance

measurement formula where D is the measured distance, R is the propagation velocity (Rate) in air

(speed of sound) and T represents time. In this application T is divided by 2 as T is double the time

value from transmitter to object back to receiver.

Features:

• Power Supply: +5V DC

• Quiescent Current: < 2mA

• Working Current: 15mA

• Effectual Angle: < 15°

• Ranging Distance: 2cm – 400 cm / 1" - 13ft

• Resolution: 0.3 cm

• Measuring Angle: 30 degrees

• Trigger Input Pulse width: 10 µs

• Dimensions: 45mm x 20mm x 15mm

Pin assignment:

1. Vcc +5V power supply

2. Trig Trigger input pin

3. Echo Echo output pin

4. Gnd power ground

7 HC-SR04 Ultrasonic Range Sensor 96 B4R Example Projects

7.1 HC-SR04 Simple demo project

This project shows the basic operation of the device.

7.1.1 Sketch

We use:

• 1 Arduino UNO

• 1 HC-SR04 Ultrasonic Range Sensor

• 1 push button

• 1 LED

• 1 220 Ω resistor for the LED

We connect_

• The GND pin of the UNO to the GND

line of the breadboard.

• The 5V pin of the UNO to the Vcc line

of the breadboard.

• The GND pin of the HC-SR04 to the

GND line of the breadboard.

• The Vcc pin of the HC-SR04 to the Vcc

line of the breadboard.

• Pin D4 of the UNO to the Trig pin of the

HC-SR04.

• Pin D5 of the UNO to the Echo pin of

the HC-SR04.

• Pin D8 of the UNO to the LED, the other

pin one via a 200 Ω resistor to GND.

• Pin A5 of the UNO to one pin of the

push button, and the other pin to GND.

The push button starts or stops measuring.

The LED shows the measuring state.

7 HC-SR04 Ultrasonic Range Sensor 97 B4R Example Projects

7.1.2 Code

7.1.2.1 B4R Arduino

We declare all pins and variables.

8 ESP8266 / WeMos D1 R2 board 98 B4R Example Projects

8 ESP8266 / WeMos board D1 R2

Another interesting board is the ESP8266 board for IoT solutions, it’s a powerful microcontroller

with built-in support for wifi.

A good solution is the WeMos D1R2 board which includes a USB to serial converter.

The WeMos-D1R2 is an ESP8266-12 based WiFi enabled microprocessor unit on a Arduino-UNO

footprint. That means the board looks and works (in most cases) like an UNO. Apparently, several

shields, sensors and output devices that are manufactured for the Arduino platform will work on the

WeMos-D1R2 with the added advantage of built-in WiFi.

There are two WeMos boards in the market.

If you are not careful you will end up with a D1 Board which is an older version.

You have to make sure you have the current version of the board WeMos-D1R2.

Digital Input / Output pins

DC power

plug

USB

mini plug

Power pins Analog

input pin

Led

Power ON

8 ESP8266 / WeMos D1 R2 board 99 B4R Example Projects

8.1 Difference in pin assignment Ardiono Uno > WeMos

Though the Arduino UNO and the WeMos-D1R2 are similar, there are a few differences in their pin

assignment. In some situations, programs written for the UNO will need to be modified a little to

the proper pin assignments of the WeMos-D1R2.

Attention: The supply voltage of the WeMos-D1R2 is 3.3 Volt !

The Arduino has 5 Volt.

Pin assignments.

The WeMos has only 11 Digital pins (RX, TX, D0 – D8) and only 1 Analog input pin.

Whereas, the Arduino UNO has 16 Digital pins and 6 Analog input pins.

SLC / D1
SDA / D2
GND AREF
GND GND
SCK / D5 D13 IOREF IOREF
MISO / D6 D12 RST RESET
MOSI / D7 D11 3.3 V 5 V
SS / D8 D10 5 V GND
D7 D9 GND GND
D6 D8 GND GND
D5 D7 VIN VIN
D4 D6
D3 D5 A0 A0
D2 D4 A1
D1 D3 A2
D0 D2 A3
TX D1 / TX SDA A4
RX D0 / RX SLC A5

 WeMos UNO WeMos UNO

8 ESP8266 / WeMos D1 R2 board 100 B4R Example Projects

8.2 Configuration

Open Arduino IDE - File - Preferences and add the following URL:

http://arduino.esp8266.com/stable/package_esp8266com_index.json

http://arduino.esp8266.com/stable/package_esp8266com_index.json

8 ESP8266 / WeMos D1 R2 board 101 B4R Example Projects

Then, in Arduino IDE > Tools - Board - Boards Manager. Search for esp and install esp8266 by

ESP8266 community.

In the B4R JDE open the boards selector and

select the board type (select the highest

UploadSpeed):

8 ESP8266 / WeMos D1 R2 board 102 B4R Example Projects

B4R includes two ESP8266 specific libraries:

rESP8266

• ESP8266 - Currently includes a single method that restarts the board.

• D1Pins - Maps the pins of WeMos boards.

rESP8266WiFi - Similar to rEthernet library. It includes the following types:

• ESP8266WiFi - Responsible for connecting or creating the wireless network.

• WiFiSocket - Equivalent to EthernetSocket.

• WiFiServerSocket - Equivalent to EthernetServerSocket.

• WiFiUDP - Equivalent to EthernetUDP

Working with ESP8266WiFi is simple and similar to working with the Ethernet shield.

Example of a socket connection (depends on rESP8266WiFi and rRandomAccessFile).

Note that it requires B4R v1.50+ as it uses the new B4RSerializator feature:

https://www.b4x.com/android/forum/threads/72404/#content

8 ESP8266 / WeMos D1 R2 board 103 B4R Example Projects

8.3 ESD_LEDGreen.b4r

To test the board we use a program similar to the LedGreen,b4r project.

A pushbutton to switch ON or OFF a green LED.

8.3.1 Sketch

Material:

• 1 pushbutton switch

• 1 green LED

• 1 150 Ω resistor

We connect one GND pin of the

WeMos to the GND line of the

breadboard.

We add a pushbutton on the

breadboard. Connect one pin to the

breadboard GND line.

The other pin to digital pin D0 on

the WeMos.

Then we

- Add a green Led on the

breadboard.

- Connect the cathode (-) via a

150 Ω resistor to the ground GND

line of the breadboard.

- Connect the anode (+) to digital

pin D4.

For the LED we use a resistor with a value of 150 Ω instead of 220 Ω because the voltage of the

WeMos is m3.3 V instead of 5 V for the Arduino ONE.

8 ESP8266 / WeMos D1 R2 board 104 B4R Example Projects

8.3.2 Code

This project needs the rESP266 library.

Sub Process_Globals
 Public Serial1 As Serial
 Private pinButton As Pin 'pin for the button
 Private pinLEDGreen As Pin 'pin for the green Led
 Private LightOn = False As Boolean

 Private ESPins As D1Pins
End Sub

We reuse the same declarations as in the Arduino LEDGreen project, but we need to add a

declaration, Private ESPins As D1Pins, for the pins of the WeMos.

Private Sub AppStart
 Serial1.Initialize(115200)

 'Using the internal pull up resistor to prevent the pin from floating.
 pinButton.Initialize(ESPins.D4, pinButton.MODE_INPUT_PULLUP)
 pinButton.AddListener("pinButton_StateChanged")

 pinLEDGreen.Initialize(ESPins.D5, pinLEDGreen.MODE_OUTPUT)
End Sub

The initialization of the pins is different, we use the D1Pins object instead of the Pin object.

Private Sub pinButton_StateChanged (State As Boolean)
 If State = False Then 'remember, False means button pressed.
 LightOn = Not(LightOn)
 pinLEDGreen.DigitalWrite(LightOn)
 End If
End Sub

This routine the same as in the Arduino LEDGreen project.

8 ESP8266 / WeMos D1 R2 board 105 B4R Example Projects

8.4 WiFi Remote Configutation

Empty.

8 FAQ 106 B4R Example Projects

9 FAQ

Some of the chapters below have been picked up from the forum.

9.1 "Please save project first" message

When I try to compile or open the Designer, I see a message saying: "Please save source code first."

A new project doesn't have a containing folder until it is first saved.

Save your project and this error will go away.

9.2 "Are you missing a library reference" message

Compiler says: "Are you missing a library reference?".

Go to the Libraries tab in the right pane and check the

required libraries.

If you do not know which library a specific object type

belongs to, you can go to the documentation page.

At the bottom of this page there is a long list with all the object

types.

Pressing on any type will take you to the right library.

Note that the trial version doesn't support libraries. Only the

full version.

https://www.b4x.com/b4r/documentation.html

8 FAQ 107 B4R Example Projects

9.3 How loading / updating a library

See the Libraries chapter in the B4X B4X Language booklet.

A list of the official and additional libraries with links to the relevant forum threads is shown in the

B4R Documentation page.

To load or update a library follow the steps below:

• Download the library zip file somewhere.

• Unzip it.

• Copy the xxx.xml file to the

o B4R Library folder for a standard B4R library

o Additional libraries folder for an additional library.

• Right click in the libraries list in the Tab LibrariesManager and click on

and select the library.

9.4 Split a long line into two or more lines

To split a long line into two or more lines put an underscore character, seperated by a blank

character, at the end of the line.

 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP) 'Using t

Becomes:

 pinButton.Initialize(pinButton.A5, pinButton.MODE_INPUT_PULLUP) _
 'Using the internal pull up resistor to prevent the pin from floating.

https://www.b4x.com/guides/B4XLanguage.html#pf57
https://www.b4x.com/b4r/documentation.html

8 FAQ 108 B4R Example Projects

9.5 "Process has timeout" message

If you often get this message "Process has timeout" you can change its value:

• In the IDE menu Tools / IDE Options click on Configure Process Timeout.

• And change the value:

8 FAQ 109 B4R Example Projects

9.6 How to pass an Array to a Sub

It is possible to pass Arrays, also multidimensional Arrays, to a sub.

Code example.
 Private one(1), two(1,2), three(1,2,3) As String

Sub Test(a() As String, b(,) As String, c(,,) As String) As String(,)
 ...
End Sub
'
'
 Test(one, two, three)

You need to specify the rank (number of dimensions) in the Sub definition with ',' .

If you want the Sub to return an array you must also specify it.

Sub Test(a() As String, b(,) As String, c(,,) As String) As String
Returns a single string.

Sub Test(a() As String, b(,) As String, c(,,) As String) As String()
Returns a one rank string array.

Sub Test(a() As String, b(,) As String, c(,,) As String) As String(,)
Returns a two rank string array.

9.7 Select True / Case trick

The question: It would be nice to be able to use Select Case using the 'greater than' and 'less than'

operators <>. It makes for cleaner code than 'if' 'else' and 'end if' etc.

This trick does it:

i = 10
Select True
Case (i < 9)
 Log("False")
Case (i = 10)
 Log("True")
End Select

9 Glossary 110 B4R Example Projects

10 Glossary

10.1 Electricity basics

Electricity Basics. Link to the ITP Physical Computing site.

10.2 PWM Pulse Width Modulation

Pulse Width Modulation, or PWM, is a technique for getting analog results with digital means.

Digital control is used to create a square wave, a signal switched between on and off. This on-off

pattern can simulate voltages in between full on (5 Volts) and off (0 Volts) by changing the portion

of the time the signal spends on versus the time that the signal spends off. The duration of "on time"

is called the pulse width. To get varying analog values, you change, or modulate, that pulse width.

If you repeat this on-off pattern fast enough with an LED for example, the result is as if the signal is

a steady voltage between 0 and 5v controlling the brightness of the LED.

In the graphic below, the green lines represent a regular time period. This duration or period is the

inverse of the PWM frequency. In other words, with Arduino's PWM frequency at about 500Hz, the

green lines would measure 2 milliseconds each. A call to analogWrite() is on a scale of 0 - 255,

such that analogWrite(255) requests a 100% duty cycle (always on), and analogWrite(127) is a 50%

duty cycle (on half the time) for example.

Source Android Site Tutorials.

https://itp.nyu.edu/physcomp/lessons/electronics/electricity-the-basics/
https://www.arduino.cc/en/Reference/AnalogWrite
https://www.arduino.cc/en/Tutorial/PWM

	1 Getting started
	1.1 Useful links

	2 Arduino UNO board
	2.1 Power supply
	2.2 Pins
	2.2.1 Power pins
	2.2.2 Digital Input / Output pins
	2.2.3 Analog input pins

	2.3 Input modes INPUT / INPUT_PULLUP
	2.4 Basic Pin functions
	2.4.1 Initialize
	2.4.2 DigitalRead
	2.4.3 DigitalWrite
	2.4.4 AnalogRead
	2.4.5 AnalogWrite

	2.5 RunNative inline C

	3 B4R differences versus B4A/B4J/B4i
	3.1 No user interface
	3.2 Memory
	3.3 Stack Buffer
	3.4 ByteConverter
	3.5 Concatenation
	3.6 String methods
	3.7 Encoding
	3.8 Variables
	3.9 New Keywords
	3.9.1 AddLooper
	3.9.2 AvailableRAM
	3.9.3 CallSubPlus
	3.9.4 Delay
	3.9.5 DelayMicroseconds
	3.9.6 JoinBytes
	3.9.7 JoinStrings
	3.9.8 MapRange
	3.9.9 Micros
	3.9.10 Millis
	3.9.11 StackBufferUsage

	3.10 Variable Types
	3.10.1 Array variables
	3.10.2 Array of objects
	3.10.3 Type variables

	3.11 Casting

	4 First example programs
	4.1 Button.b4r
	4.1.1 Sketch
	4.1.2 Code

	4.2 LedGreen.b4r
	4.2.1 Sketch
	4.2.2 Code

	4.3 LedGreenNoSwitchBounce.b4r
	4.3.1 Sketch
	4.3.2 Code

	5 More advanced programs Arduino Uno
	5.1 TrafficLight.b4r
	5.1.1 Sketch
	5.1.2 Code

	5.2 LightDimmer.b4r
	5.2.1 Sketch
	5.2.2 Code

	5.3 DCMotor.b4r
	5.3.1 Sketch
	5.3.2 Code

	5.4 DCMotorHBridge.b4r
	5.4.1 Sketch
	5.4.2 Code

	5.5 ServoMotor.b4r
	5.5.1 Sketch
	5.5.2 Code

	5.6 PulseWidthModulation.b4r
	5.6.1 Sketch
	5.6.2 Code

	5.7 PulsePeriodModulation.b4r
	5.7.1 Sketch
	5.7.2 Code

	5.8 DCMotor slow motion
	5.8.1 Sketch
	5.8.2 Code

	5.9 LCDDisplay.b4r
	5.9.1 LCD display
	5.9.2 Sketch
	5.9.3 Code

	5.10 PulseWidthMeter
	5.10.1 Sketch
	5.10.2 Code

	5.11 ObjectArrays.b4r
	5.11.1 Sketch
	5.11.2 Code

	6 HC-05 Bluetooth
	6.1 Program HC05LedOnOff.b4r
	6.1.1 Sketch
	6.1.2 Code
	6.1.2.1 B4R Arduino UNO
	6.1.2.2 B4A Android

	6.2 Program HC05LightDimmer
	6.2.1 Sketch
	6.2.2 Code
	6.2.2.1 B4R Arduino
	6.2.2.2 B4A Android

	6.3 Program HC05DataLogger.b4r
	6.3.1 Sketch
	6.3.2 Code
	6.3.2.1 B4R Arduino
	6.3.2.2 B4A Android

	6.4 Program HC-05 DCMotor
	6.4.1 Sketch
	6.4.2 Code
	6.4.2.1 B4R Arduino
	6.4.2.2 B4A Android

	7 HC-SR04 Ultrasonic Range Sensor
	7.1 HC-SR04 Simple demo project
	7.1.1 Sketch
	7.1.2 Code
	7.1.2.1 B4R Arduino

	8 ESP8266 / WeMos board D1 R2
	8.1 Difference in pin assignment Ardiono Uno > WeMos
	8.2 Configuration
	8.3 ESD_LEDGreen.b4r
	8.3.1 Sketch
	8.3.2 Code

	8.4 WiFi Remote Configutation

	9 FAQ
	9.1 "Please save project first" message
	9.2 "Are you missing a library reference" message
	9.3 How loading / updating a library
	9.4 Split a long line into two or more lines
	9.5 "Process has timeout" message
	9.6 How to pass an Array to a Sub
	9.7 Select True / Case trick

	10 Glossary
	10.1 Electricity basics
	10.2 PWM Pulse Width Modulation

