
Using source code templates in programming.

Introduction

The word “template” has different meanings according to the context in which it is

used.

In a Microsoft Word application you can use a template as a blue-print for forms,

letters, mailings and so on. The template typically has some fields that can be filled in

when a document is created that is based on the template. The layout is usually

preset.

In the programming languages a template can be used to reuse code. With the use of

a templating “engine” (a class) the source code is generated. The templates can be

build using the specific syntax from the templating engine.

In this text you can learn how to make a template and generate the source code from

it.

Make a template

You can use or copy an existing piece of source code and place some placeholders in

it. Before generating the result code you give these placeholders a value.

A placeholder is surrounded by special markings like for instance {{...}} or {%...%}

or in my case [@...]. Inside these markings you place a (variable) name or a

reference.

An example:

Sub load_list
 Private lst As List
 lst.Initialize
 If File.Exists(xui.DefaultFolder,"[@filename]") Then
 lst = File.ReadList(xui.DefaultFolder," [@filename]")

 For i = 0 To lst.Size-1
 [@clv_var].AddTextItem(lst.Get(i), lst.Get(i))
 Next
 End If
End Sub

In this example the [@filename] placeholder refers to the filename being used for

instance "categorie.txt" and the [@clv_var] refers to the name of the CustomListView

for instance clv1.

If you want to translate the texts of a application (titles, label texts, button texts,

messages, …) you can put placeholders for the texts that need to translated.

A templating engine also supports loops like for instance {for each …}…{/for each} or

{% for … %}…{% endfor %} or in my case [@loop1]…[/@loop1].

These changes can be done with an editor like Notepad++ or with a special tool (see

below).

The templating engine that is used in the tool also supports 1 level of nesting

template files. An example:

clv_page_editable_with_textitems.tpl:

[@B4J_header.tpl]
[@clv_page_declarations.tpl]

[@clv_editable_with_textitems.tpl]
[@clv_load_list_with_textitems_from_file.tpl]
[@clv_save_list_with_textitems_to_file.tpl]

Fill in the placeholders

Before you can generate the code from the template you need to fill the placeholders

with a value.

In PHP you would write a script that gets all the information needed by the template

and pass that information on as arguments for the templating engine.

The B4J tool uses subroutines to fil a map with the necessary values. That map is

then used in the generating process. The template class provides a method called

find_placeholders to provide the map with the necessary keys (the placeholders).

Generate the resulting code

Now it’s time for the templating engine to do its thing.

The template text and the values map are used in the template class methods:

replace_placeholders, process_level1_template, process_loops.

The result of the generating process is a *.bas file. This file (if it is complete) can be

added in the IDE as an existing module.

A few examples:

The load_list subroutine (see above) when generated looks like this:

Sub load_list
 Private lst As List
 lst.Initialize
 If File.Exists(xui.DefaultFolder,"categorie.txt") Then
 lst = File.ReadList(xui.DefaultFolder,"categorie.txt")
 For i = 0 To lst.Size-1

 clv1.AddTextItem(lst.Get(i), lst.Get(i))
 Next
 End If
End Sub

The clv_page_editable_with_textitems page when generated looks like this:

B4J=True
Group=Default Group
ModulesStructureVersion=1
Type=Class
Version=9.8
@EndOfDesignText@
Sub Class_Globals

 ' template declarations.tpl
 Private Root As B4XView 'ignore
 Private xui As XUI 'ignore
 Private clv1 As CustomListView
 Private tf1 As TextField
 Private btn1 As Button
 Private clvindex As Int
End Sub

Public Sub Initialize As Object
 Return Me
End Sub
Private Sub B4XPage_Created (Root1 As B4XView)
 Root = Root1
 Root.LoadLayout("category_layout")
 B4XPages.SetTitle(Me,"Voorbeeld01 - Categorie")
 xui.SetDataFolder("Voorbeeld01")

End Sub
Private Sub B4XPage_Appear
 btn1.Text = "Voegtoe"
 clv1.Clear
 clvindex = 0
 tf1.Text = ""
 load_list
End Sub
Private Sub B4XPage_Disappear

 If clv1.Size > 0 Then
 save_list
 End If
End Sub
Sub clv1_ItemClick (Index As Int, Value As Object)
 tf1.Text = Value
 btn1.Text = "Wijzig"
 clvindex = Index

End Sub
Private Sub clv1_ItemLongClick (Index As Int, Value As Object) ' B4J = right click
 tf1.Text = Value
 btn1.Text = "Verwijder"
 clvindex = Index
End Sub

Private Sub btn1_Click
 Select btn1.Text
 Case "Voegtoe"
 clv1.AddTextItem(tf1.text,tf1.text)
 Case "Wijzig"

 clv1.RemoveAt(clvindex)
 clv1.InsertAtTextItem(clvindex,tf1.text,tf1.text)
 Case "Verwijder"
 Log(clvindex)
 clv1.RemoveAt(clvindex)
 If clv1.Size < 1 Then
 File.Delete(xui.DefaultFolder,"categorie.txt")
 End If

 End Select
 If clv1.Size > 0 Then
 save_list
 End If
 B4XPage_Appear
End Sub
Sub load_list
 Private lst As List

 lst.Initialize
 If File.Exists(xui.DefaultFolder,"categorie.txt") Then
 lst = File.ReadList(xui.DefaultFolder,"categorie.txt")
 For i = 0 To lst.Size-1
 clv1.AddTextItem(lst.Get(i), lst.Get(i))
 Next
 End If
End Sub

Sub save_list
 Private lst As List
 lst.Initialize
 For i = 0 To clv1.Size-1
 lst.Add(clv1.GetValue(i))
 Next
 File.Delete(xui.DefaultFolder,"categorie.txt")
 If lst.Size > 0 Then

 File.WriteList(xui.DefaultFolder,"categorie.txt",lst)
 End If
End Sub

Notice that the texts were translated into Dutch. The header template information is

necessary to add the page to the IDE.

You can find more examples in the zip-file provided with this text.

Library references

When you add the generated code to the IDE project you will probably get some

errors about the libraries that are used.

In the project source template you can provide the information about the libraries.

An example called example01.b4j.tpl (the top part):

AppType=JavaFX
Build1=Default,b4j.example
[@loop1][@file_var]=[@layout_filename]
[/@loop1][@loop2][@filegroup_var]=[@group_name]

[/@loop2]Group=Default Group
[@loop3][@library_var]=[@library_name]
[/@loop3][@loop4][@module_var]=[@module_path]
[/@loop4]NumberOfFiles=[@number_of_files]
NumberOfLibraries=[@number_of_libraries]
NumberOfModules=[@number_of_modules]
Version=9.8
@EndOfDesignText@

#Region Project Attributes
 #MainFormWidth: 600
 #MainFormHeight: 600
#End Region
' from template example01.b4j.tpl
Sub Process_Globals
 Private fx As JFX
 Private MainForm As Form

End Sub

Sub AppStart (Form1 As Form, Args() As String)
 MainForm = Form1
 MainForm.Show
 Dim PagesManager As B4XPagesManager
 PagesManager.Initialize(MainForm)
End Sub

And the generated file (also the top part) looks like this:

AppType=JavaFX
Build1=Default,b4j.example
File1=category_layout.bjl
File2=MainPage.bjl

File3=subcategory_layout.bjl
FileGroup1=Default Group
FileGroup2=New Group
Group=Default Group
Library1=b4xpages

Library2=jcore
Library3=jfx
Library4=xui views
Module1=|relative|..\B4XMainPage
Module2=|relative|..\CategoryPage

Module3=|relative|..\SubCategoryPage
NumberOfFiles=3
NumberOfLibraries=4
NumberOfModules=3
Version=9.8
@EndOfDesignText@
#Region Project Attributes
 #MainFormWidth: 600

 #MainFormHeight: 600
#End Region
' from template example01.b4j.tpl
Sub Process_Globals
 Private fx As JFX
 Private MainForm As Form
End Sub

Sub AppStart (Form1 As Form, Args() As String)
 MainForm = Form1
 MainForm.Show
 Dim PagesManager As B4XPagesManager
 PagesManager.Initialize(MainForm)
End Sub

Layout files

If you load a layout file in the code then you have to make a layout. The best way by

far is to use the IDE designer.

In the tool (see below) you can review a representation of an existing layout. It

provides the information from the layout so that you can fill in the variables map.

pmtemplates B4J tool

On the left side you find 4 files lists:

TPL: template files (extension = .tpl)

VAR: variables files (extension = .var)

BAS: generated files (extension = .bas)

LAY: layout files (extensions = .bal, .bil, .bjl, .json)

On the right side you find the menu items:

Exit: closes the application

Load: load a file (extensions .tpl, .var, .bas, .json)

Save: save the text to a file

Variables: fill in the variables map

Generate: generate the code

Clear: clears the working area and variables

In the middle you can see the name of the file, the contents of the file (in a textarea)

and some messages below the text.

When you select a .json layout file the bottom middle shows the layout buttons:

convert a bal/bjl file to JSON or a JSON file to a bal/bjl file, show/hide a layout and

load a layout (extension .bal,.bil,bjl).

The conversion uses the BalConverter class from Erel.

When you click on the Variables menu item the middle panel shows the variables list,

buttons for adding a variable, loading all variables and saving all variables. The name

of the template file is displayed and below that a webview contains the template code

with indications for the placeholders.

Steps to take to generate a template with the variables:

1. Select a template file

2. Insert placeholders where needed

3. Save the template file in the templatefiles folder and reselect the file

4. Click on the Variables menu item

5. Click on the Load button

6. Fill in the information for the placeholders.

For a loop when there is more than one placeholder provide a list

(seperator = ,) and make sure the number of items in each list are the same.

In the loop variable you indicate which variables belong to the loop.

7. Click on the Generate menu item

8. Save the generated file in the generatedfiles folder

9. Check the result by selecting the newly generated file

The application creates 4 folders in

C:\Users\<yourname>\AppData\Roaming\pmtemplates

generatedfiles, layoutfiles, templatefiles, varfiles

Layout viewer

Steps to take to view a layout file:

1. Click on the Load layout button to select a .bal or .bjl file and click on open in

the dialog (Note: the conversion doesn’t support a .bil file yet)

2. Select the newly added .bal or .bjl file in the layout files list. The text in the

middle mentions that it’s a binary file format.

3. Click the radiobutton to be used (default is bal/bjl to JSON)

4. Click on the Convert button to start the conversion process

5. A message appears that the conversion was succesfull. Click OK.

6. Select the added .json file (same filename but the extension .json is added)

7. The JSON file information is displayed in the middle.

8. Click on the Show/hide layout button to see a representation of the layout.

And that’s it. You can find the examples in the zip-file.

Happy coding!

