
Storyboard cards version 3.0

You want to create a storyboard for a mobile app, you want to keep a

scrapbook, you want to create a comic book, you want to make a

Christmas card, … then this application might be the right one for you.

In the application you can create/load/save cards that have a backdrop

image.

blankcard comiccard phonecard

Xmascard …card

On a card you can stick (attach) any number of labels that have a

background image or color and some text inside.

When you start the application the first time a folder structure is created.

C:\Users\<your username>\AppData\Roaming\storyboard_cards_30:

In the cards folder you can save the cards that you have created.

In the files folder you can save the snapshot images.

In the layouts folder you can put the card backdrop images. You can

search the internet for some nice border images.

In the shapes folder you can put all your shape images: logo’s, photo’s,

icons, line shapes, text shapes, … The filename determines the order.

So you have to do a little bit of preparation before you use the

application. You can find some examples in the attached shapes.zip file.

Unpack the zip-file and copy the files in the layouts and shapes folders.

Important note: a shape can become a card if the filename contains the

word “card”! Copy the card shapes in the layouts folder!

With the colored buttons in the top right corner of the form you can open

or close panels.

Keys:

With the keys toggle button you can open or close the keyboard shortcut

list. You can click on an item in the list or use the shortcut on the

keyboard.

Shapes:

With the shapes toggle button you can open or close the shapes list. The

shapes with the green border are the cards. Click on a shape and it will

be added to the main panel.

Properties:

With the properties toggle button you can open or close the properties

panel. You can set the properties of the selected shape or card in this

panel.

Fonts settings: font family, font size, bold, italic.

Text settings: text, alignment, text color.

Size of the shape or card: width, height.

Border settings (shape only): no border, strokewidth, corner radius.

Background color setting for a shape or a card.

Snapshot:

With the snapshot toggle button you can open or close the zoom image

view that contains the image of the snapshot that was taken from the

main panel.

With the blue save snapshot button in the upper right corner you can

save the snapshot image to a file. By default the filename contains the

datetime ticks. You can put these files in the files folder.

Grid:

With the grid toggle button you can show or hide the grid from the main

panel. Each gray cell is 10 pixels high and 10 pixels wide. These gray

cells are grouped in cells of 100 pixels high and wide. The main panel is

2000 pixels high and 2000 pixels wide.

You can drag the grid with the mouse in any direction until it reaches a

border.

If you leave the grid on when you show the snapshot then the grid will

also be visible in the snapshot.

Reset:

If you click on the reset button you can remove all the cards and shapes

from the main panel. A confirmation message will appear.

JSON:

The saved card files are in the JSON (JavaScript Object Notation) text

format. There is an entry in the file for each shape that is attached to the

card that was saved.

You can check the properties of the shapes and of the card.

Technical comments:

Main:

Support for keystrokes is added to the Main module. The

AddKeyPressedListener subroutine prepares a KeyEvent for the specified

keystrokes that can be selected in the Main_KeyPressed_Event

subroutine. The keys panel lists the available keystrokes.

B4XMainPage:

The folder structure is created using the xui method SetDataFolder and

the property DefaultFolder.

 xui.SetDataFolder("storyboard_cards_30")

 File.MakeDir(xui.DefaultFolder,"cards")

 cardsfolder = File.DirData("storyboard_cards_30") & "\cards"

A font family list is created by using the fx GetAllFontFamilies method.

 fontfamilylst = fx.GetAllFontFamilies

A color names list is created from the colornames.json file that is

provided in the Assets folder.

 Dim jstr As String = File.ReadString(File.DirAssets,"colornames.json")

 jlst = jstr.As(JSON).ToList

The shapes panel contains a CustomListView (clvshapes). This CLV is

loaded with the information from the layouts and shapes folders. Each

row in the list contains 6 labels. Each label from a row contains the image

from the file and the filename.

The files from the layouts folder are first added to the list and then the

files from the shapes folder. The list is in alphabetical order. If you want a

shape to appear first in the list you can give the filename a prefix with a

number like for instance 0_textlabel.

If you click (lblitem_MouseClicked) on a shape in the clvshapes list then

that shape or card is added to the main panel in the upper left corner.

The subroutines from the properties panel take care of the changes in the

views (CLV’s, buttons, Comboboxes, checkbox). When you click on a card

or shape the updates in the properties panel are processed.

You can move a card or shape around by dragging it in the main panel.

The Mouse_Clicked, Mouse_Dragged, Mouse_Pressed and

Mouse_Released event subroutines take care of the movement of a card

or shape.

Note: the EventData.Consume method consumes the event and prevent

it from being handled by the nodes parent!

The methods attach_children and detach_children take care of the adding

or removing of the shape labels to or from the card panel (pane).

The save_card and load_card subroutines use a JSON text file to store

the shape and card properties in.

Note: Incorrect changes to the JSON text file outside of the application

can cause the application to crash!

colorfunctions:

The set_RGB_values method converts a color string to a RGB list.

The format of the color string is “255,255,255” and after the conversion

the RGB list can be used with RGB.get(0), RGB.get(1), RGB.get(2).

xui.Color_ARGB(255,RGB.Get(0),RGB.Get(1),RGB.Get(2)) produces an

int type variable and

fx.Colors.ARGB(200,RGB.get(0),RGB.get(1),RGB.get(2)) produces a paint

type variable.

