This library allows to manipulate complex number

class

dim z1,z2,z3 as complexe

z1.setComplexe(3,-4)

z1 = z1.conj()

z2 = z1.sqrt()

z3 = z1.add(z2)

Label1.Text = z3.Re() & " -> " & z2.Re() & " -> " & z1.Re()

Label2.Text = z3.Im() & " -> " & z2.Im() & " -> " & z1.Re()

class

**complexe**

*let*

**z = x + iy**

**Re()***as double*: Re(z)**Im()***as double*: Im(z)**setComplexe**(x as*double*, y as*double*) : initialize z = x + iy**setPolaire**(r as*double*, theta as*double*) : initialize z = r( cos(theta) + isin(theta) )**mod**() as*double*: |z| (abs/modulus/magnitude of z)**arg**() as*double*: angle/phase/argument of z**conj**() as*complexe*: conjuguate of z -> (x+iy)=(x-iy)

**add**(b as*complexe*) as*complexe*: z + b**minus**(b as*complexe*) as complexe : z - b**mlt**(b as*complexe*) as*complexe*: z * b**div**(b as*complexe*) as*complexe*: z / b**reciproc**() as*complexe*: 1/z

**exp**() as*complexe*: exp(z) (*exponential)***log**() as*complexe*: ln(n) (*natural log)***log10**() as*complexe*: log(n) (*log base 10)***sqrt**() as*complexe*: square root of z**pow**(b as*complexe*) as*complexe*: z power b (exist only for z^b.x or x^b)

**sin**() as*complexe*: sinus of z (*all function in radian*)**sinh**() as*complexe*: sinus hyperbolic of z**cos**() as*complexe*: cosinus of z**cosh**) as*complexe*: cosinus hyperbolic of z**tan**() as*complexe*: tan(z)**tanh**() as*complexe*: tanh(z)

__exemple :__dim z1,z2,z3 as complexe

z1.setComplexe(3,-4)

z1 = z1.conj()

z2 = z1.sqrt()

z3 = z1.add(z2)

Label1.Text = z3.Re() & " -> " & z2.Re() & " -> " & z1.Re()

Label2.Text = z3.Im() & " -> " & z2.Im() & " -> " & z1.Re()

#### Attachments

Last edited: