#define DEG2RAD(degrees) (degrees * 0.01745327) // degrees * pi over 180
static void distanceFunc(sqlite3_context *context, int argc, sqlite3_value **argv)
{
    // check that we have four arguments (lat1, lon1, lat2, lon2)
    assert(argc == 4);
    // check that all four arguments are non-null
    if (sqlite3_value_type(argv[0]) == SQLITE_NULL || sqlite3_value_type(argv[1]) == SQLITE_NULL || sqlite3_value_type(argv[2]) == SQLITE_NULL || sqlite3_value_type(argv[3]) == SQLITE_NULL) {
        //sqlite3_result_null(context);
        //return;
    }
    // get the four argument values
    double lat1 = sqlite3_value_double(argv[0]);
    double lon1 = sqlite3_value_double(argv[1]);
    double lat2 = sqlite3_value_double(argv[2]);
    double lon2 = sqlite3_value_double(argv[3]);
    // convert lat1 and lat2 into radians now, to avoid doing it twice below
    double lat1rad = DEG2RAD(lat1);
    double lat2rad = DEG2RAD(lat2);
    // apply the spherical law of cosines to our latitudes and longitudes, and set the result appropriately
    // 6378.1 is the approximate radius of the earth in kilometres
    
    double dist = acos(sin(lat1rad) * sin(lat2rad) + cos(lat1rad) * cos(lat2rad) * cos(DEG2RAD(lon2) - DEG2RAD(lon1))) * 6378.1 * 1000;
    
    sqlite3_result_double(context, acos(sin(lat1rad) * sin(lat2rad) + cos(lat1rad) * cos(lat2rad) * cos(DEG2RAD(lon2) - DEG2RAD(lon1))) * 6378.1 * 1000);
}